Metabolome and Transcriptome Analyses Reveal the Differences in the Molecular Mechanisms of Oat Leaves Responding to Salt and Alkali Stress Conditions

被引:3
|
作者
Bai, Jianhui [1 ]
Lu, Peina [2 ]
Li, Feng [3 ]
Li, Lijun [1 ]
Yin, Qiang [3 ]
机构
[1] Inner Mongolia Agr Univ, Agr Coll, Hohhot 010018, Peoples R China
[2] Gansu Agr Univ, State Key Lab Aridland Crop Sci, Lanzhou 730070, Peoples R China
[3] Chinese Acad Agr Sci, Inst Grassland Res, Hohhot 010010, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 06期
基金
中国国家自然科学基金;
关键词
alkali stress; salt stress; metabolome; transcriptome; oat; GENE-EXPRESSION; SOLUBLE SUGAR; TOLERANCE; ACID; ARABIDOPSIS; RESPONSES; TOXICITY; IMPROVES; DROUGHT; GROWTH;
D O I
10.3390/agronomy13061441
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Plant growth and production are more severely inhibited by alkalinity than by salinity. However, the metabolites responsible for the reduced growth caused by alkalinity are largely unknown. Here, the Illumina RNA-Seq analysis and targeted metabolome were used to identify the differentially expressed genes and metabolites responding to salt and alkali stresses. The expression levels of eight genes related to photosynthesis and some genes related to chlorophyll synthesis decreased under alkali stress, whereas no changes were detected under salt stress, which may explain the observed lower level of photosynthetic rate in alkalinity than in salinity. Under alkali stress, significant decreases in the relative abundances of cis-cinnamic acid and scopoline were observed, which correlated with the high levels of reactive oxygen species (ROS). The levels of protocatechuic acids decreased, correlating with the observed decrease in the chlorophyll content. Alkalinity markedly increased the production of o-coumaric acid, which contributes to growth inhibition. No significant changes in cis-cinnamic acid, scopoline, and o-coumaric acid were detected in salinity, which may be the reason for the stronger growth inhibition due to alkali stress than salt stress. The accumulation of citric acid, serotonin, pyroglutamic acid, L-citrulline, ferulic acid, and caffeic acid was detected under salt and alkali stress conditions, indicating high free radical scavenging capacity. The enhancement of mevalonic acid and salicylic acid levels was detected under alkali stress, which could have facilitated chlorophyll accumulation. Salt and alkali stress conditions also led to the accumulation of cyclic AMP related to inorganic ion regulation and betaine-related osmoregulation. Benzamide, phenethylamine, N-feruloyltyramine, chrysoeriol 6-C-hexoside, 1,3-o-di-p-coumaroyl glycerol, cordycepin, and 1-o-p-cumaroylglycerol were identified to be accumulated in response to alkali stress.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Combined Metabolome and Transcriptome Analyses of Maize Leaves Reveal Global Effect of Biochar on Mechanisms Involved in Anti-Herbivory to Spodoptera frugiperda
    He, Tianjun
    Chen, Lin
    Wu, Yingjun
    Wang, Jinchao
    Wu, Quancong
    Sun, Jiahao
    Ding, Chaohong
    Zhou, Tianxing
    Chen, Limin
    Jin, Aiwu
    Li, Yang
    Zhu, Qianggen
    METABOLITES, 2024, 14 (09)
  • [32] Transcriptome and Metabolome Analyses Reveal Molecular Responses of Two Pepper (Capsicum annuum L.) Cultivars to Cold Stress
    Zhang, Jianwei
    Liang, Le
    Xie, Yongdong
    Zhao, Zhao
    Su, Lihong
    Tang, Yi
    Sun, Bo
    Lai, Yunsong
    Li, Huanxiu
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [33] Integration of Physiological, Transcriptomic, and Metabolomic Analyses Reveal Molecular Mechanisms of Salt Stress in Maclura tricuspidata
    Sui, Dezong
    Wang, Baosong
    El-Kassaby, Yousry A.
    Wang, Lei
    PLANTS-BASEL, 2024, 13 (03):
  • [34] Integrated Transcriptome and Metabolome Analysis of Rice Leaves Response to High Saline-Alkali Stress
    Qian, Guangtao
    Wang, Mingyu
    Wang, Xiaoting
    Liu, Kai
    Li, Ying
    Bu, Yuanyuan
    Li, Lixin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (04)
  • [35] Transcriptome and metabolome analyses reveal molecular mechanisms of anthocyanin-related leaf color variation in poplar (Populus deltoides) cultivars
    Peng, Xu Qian
    Ai, Yu Jie
    Pu, Yu Ting
    Wang, Xiao Jing
    Li, Yu Hang
    Wang, Zhong
    Zhuang, Wei Bing
    Yu, Bing Jun
    Zhu, Zhi Qi
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [36] Volatile metabolome and transcriptome reveal fragrance release rhythm and molecular mechanisms of Rosa yangii
    Zhou, Li-jun
    Huang, Run-huan
    Liu, Ting-han
    Liu, Wei-chao
    Chen, Yun-yi
    Lu, Pei-feng
    Luo, Le
    Pan, Hui-tang
    Yu, Chao
    Zhang, Qi-xiang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2023, 22 (07) : 2111 - 2125
  • [37] Volatile metabolome and transcriptome reveal fragrance release rhythm and molecular mechanisms of Rosa yangii
    ZHOU Li-jun
    HUANG Run-huan
    LIU Ting-han
    LIU Wei-chao
    CHEN Yun-yi
    Lü Pei-feng
    LUO Le
    PAN Hui-tang
    YU Chao
    ZHANG Qi-xiang
    JournalofIntegrativeAgriculture, 2023, 22 (07) : 2111 - 2125
  • [38] Transcriptome Changes Reveal the Molecular Mechanisms of Humic Acid-Induced Salt Stress Tolerance in Arabidopsis
    Cha, Joon-Yung
    Kang, Sang-Ho
    Ji, Myung Geun
    Shin, Gyeong-Im
    Jeong, Song Yi
    Ahn, Gyeongik
    Kim, Min Gab
    Jeon, Jong-Rok
    Kim, Woe-Yeon
    MOLECULES, 2021, 26 (04):
  • [39] Transcriptome and Metabolome Reveal Salt-Stress Responses of Leaf Tissues from Dendrobium officinale
    Zhang, Mingze
    Yu, Zhenming
    Zeng, Danqi
    Si, Can
    Zhao, Conghui
    Wang, Haobin
    Li, Chuanmao
    He, Chunmei
    Duan, Jun
    BIOMOLECULES, 2021, 11 (05)
  • [40] Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress
    Zhang, Yujuan
    Li, Donghua
    Zhou, Rong
    Wang, Xiao
    Dossa, Komivi
    Wang, Linhai
    Zhang, Yanxin
    Yu, Jingyin
    Gong, Huihui
    Zhang, Xiurong
    You, Jun
    BMC PLANT BIOLOGY, 2019, 19 (1)