Metabolome and Transcriptome Analyses Reveal the Differences in the Molecular Mechanisms of Oat Leaves Responding to Salt and Alkali Stress Conditions

被引:3
|
作者
Bai, Jianhui [1 ]
Lu, Peina [2 ]
Li, Feng [3 ]
Li, Lijun [1 ]
Yin, Qiang [3 ]
机构
[1] Inner Mongolia Agr Univ, Agr Coll, Hohhot 010018, Peoples R China
[2] Gansu Agr Univ, State Key Lab Aridland Crop Sci, Lanzhou 730070, Peoples R China
[3] Chinese Acad Agr Sci, Inst Grassland Res, Hohhot 010010, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 06期
基金
中国国家自然科学基金;
关键词
alkali stress; salt stress; metabolome; transcriptome; oat; GENE-EXPRESSION; SOLUBLE SUGAR; TOLERANCE; ACID; ARABIDOPSIS; RESPONSES; TOXICITY; IMPROVES; DROUGHT; GROWTH;
D O I
10.3390/agronomy13061441
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Plant growth and production are more severely inhibited by alkalinity than by salinity. However, the metabolites responsible for the reduced growth caused by alkalinity are largely unknown. Here, the Illumina RNA-Seq analysis and targeted metabolome were used to identify the differentially expressed genes and metabolites responding to salt and alkali stresses. The expression levels of eight genes related to photosynthesis and some genes related to chlorophyll synthesis decreased under alkali stress, whereas no changes were detected under salt stress, which may explain the observed lower level of photosynthetic rate in alkalinity than in salinity. Under alkali stress, significant decreases in the relative abundances of cis-cinnamic acid and scopoline were observed, which correlated with the high levels of reactive oxygen species (ROS). The levels of protocatechuic acids decreased, correlating with the observed decrease in the chlorophyll content. Alkalinity markedly increased the production of o-coumaric acid, which contributes to growth inhibition. No significant changes in cis-cinnamic acid, scopoline, and o-coumaric acid were detected in salinity, which may be the reason for the stronger growth inhibition due to alkali stress than salt stress. The accumulation of citric acid, serotonin, pyroglutamic acid, L-citrulline, ferulic acid, and caffeic acid was detected under salt and alkali stress conditions, indicating high free radical scavenging capacity. The enhancement of mevalonic acid and salicylic acid levels was detected under alkali stress, which could have facilitated chlorophyll accumulation. Salt and alkali stress conditions also led to the accumulation of cyclic AMP related to inorganic ion regulation and betaine-related osmoregulation. Benzamide, phenethylamine, N-feruloyltyramine, chrysoeriol 6-C-hexoside, 1,3-o-di-p-coumaroyl glycerol, cordycepin, and 1-o-p-cumaroylglycerol were identified to be accumulated in response to alkali stress.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Transcriptome and Metabolome Analyses of Salt Stress Response in Cotton (Gossypium hirsutum) Seed Pretreated with NaCl
    Ren, Wei
    Wang, Qian
    Chen, Li
    Ren, Yanping
    AGRONOMY-BASEL, 2022, 12 (08):
  • [22] Transcriptome and metabolome analyses revealed different salt tolerance pathways in leaves and roots of Rosa rugosa Thunb.
    Li, Ling
    Zang, Fengqi
    Wu, Qichao
    Lu, Yizeng
    Yu, Shuhan
    Ma, Yan
    Zang, Dekui
    SCIENTIA HORTICULTURAE, 2025, 343
  • [23] Transcriptome sequencing and metabolome analysis reveal the molecular mechanism of Salvia miltiorrhiza in response to drought stress
    Zhou, Ying
    Bai, Yan-Hong
    Han, Feng-Xia
    Chen, Xue
    Wu, Fu-Sheng
    Liu, Qian
    Ma, Wen-Zhe
    Zhang, Yong-Qing
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [24] Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in Barley
    Wang, Feifei
    Zhou, Zhenxiang
    Liu, Xiaohui
    Zhu, Liang
    Guo, Baojian
    Lv, Chao
    Zhu, Juan
    Chen, Zhong-Hua
    Xu, Rugen
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [25] The Effect of Heat Stress on Wheat Flag Leaves Revealed by Metabolome and Transcriptome Analyses During the Reproductive Stage
    Duan, Shuonan
    Meng, Xiangzhao
    Zhang, Huaning
    Wang, Xiaotong
    Kang, Xu
    Liu, Zihui
    Ma, Zhenyu
    Li, Guoliang
    Guo, Xiulin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (04)
  • [26] Transcriptome and Metabolome Analyses Reveal Molecular Responses of Two Pepper (Capsicum annuum L.) Cultivars to Cold Stress
    Zhang, Jianwei
    Liang, Le
    Xie, Yongdong
    Zhao, Zhao
    Su, Lihong
    Tang, Yi
    Sun, Bo
    Lai, Yunsong
    Li, Huanxiu
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [27] Physiological, ionomic, transcriptomic and metabolomic analyses reveal molecular mechanisms of root adaption to salt stress in water spinach
    Li, Zhenqin
    Cheng, Long
    Li, Sitong
    Liu, Guangcai
    Liu, Sijia
    Xu, Duo
    Yang, Rongchao
    Feng, Feng
    Wang, Junning
    Zheng, Chao
    BMC GENOMICS, 2025, 26 (01):
  • [28] Integrative analysis of metabolome and transcriptome reveals regulatory mechanisms of flavonoid biosynthesis in soybean under salt stress
    Wang, Yubin
    Liu, Wei
    Li, Wei
    Wang, Caijie
    Dai, Haiying
    Xu, Ran
    Zhang, Yanwei
    Zhang, Lifeng
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [29] Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress
    Yujuan Zhang
    Donghua Li
    Rong Zhou
    Xiao Wang
    Komivi Dossa
    Linhai Wang
    Yanxin Zhang
    Jingyin Yu
    Huihui Gong
    Xiurong Zhang
    Jun You
    BMC Plant Biology, 19
  • [30] Transcriptome analyses reveal molecular mechanisms underlying phenotypic differences among transcriptional subtypes of glioblastoma
    Pan, Yuan-Bo
    Wang, Siqi
    Yang, Biao
    Jiang, Zhenqi
    Lenahan, Cameron
    Wang, Jianhua
    Zhang, Jianmin
    Shao, Anwen
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2020, 24 (07) : 3901 - 3916