共 52 条
A general highly efficient synthesis of biocompatible rhodamine dyes and probes for live-cell multicolor nanoscopy
被引:34
作者:
Bucevicius, Jonas
[1
]
Gerasimaite, Ruta
[1
]
Kiszka, Kamila A. A.
[2
]
Pradhan, Shalini
[1
]
Kostiuk, Georgij
[1
]
Koenen, Tanja
[2
]
Lukinavicius, Grazvydas
[1
]
机构:
[1] Max Planck Inst Multidisciplinary Sci, Dept NanoBiophoton, Chromatin Labeling & Imaging Grp, Fassberg 11, D-37077 Gottingen, Germany
[2] Max Planck Inst Multidisciplinary Sci, Dept NanoBiophoton, Fassberg 11, D-37077 Gottingen, Germany
关键词:
FLUOROGENIC PROBES;
FLUORESCENT-PROBES;
FUSION PROTEINS;
FLUOROPHORES;
ACTIN;
D O I:
10.1038/s41467-023-36913-2
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Rhodamines are privileged fluorescent dyes for labelling intracellular structures in living cells. Here, the authors present a facile protecting-group-free synthesis permitting generation of a wide range of symmetrical and unsymmetrical 4-carboxyrhodamines covering the whole visible spectrum. The development of live-cell fluorescence nanoscopy is powered by the availability of suitable fluorescent probes. Rhodamines are among the best fluorophores for labeling intracellular structures. Isomeric tuning is a powerful method for optimizing the biocompatibility of rhodamine-containing probes without affecting their spectral properties. An efficient synthesis pathway for 4-carboxyrhodamines is still lacking. We present a facile protecting-group-free 4-carboxyrhodamines' synthesis based on the nucleophilic addition of lithium dicarboxybenzenide to the corresponding xanthone. This approach drastically reduces the number of synthesis steps, expands the achievable structural diversity, increases overall yields and permits gram-scale synthesis of the dyes. We synthesize a wide range of symmetrical and unsymmetrical 4-carboxyrhodamines covering the whole visible spectrum and target them to multiple structures in living cells - microtubules, DNA, actin, mitochondria, lysosomes, Halo-tagged and SNAP-tagged proteins. The enhanced permeability fluorescent probes operate at submicromolar concentrations, allowing high-contrast STED and confocal microscopy of living cells and tissues.
引用
收藏
页数:14
相关论文