Tunable self-biased magnetoelectric effect in magnetization-graded magnetoelectric composites

被引:11
|
作者
Annapureddy, Venkateswarlu [1 ]
Park, Sung Hoon [2 ]
Song, Hyunseok [2 ]
Ryu, Jungho [1 ,3 ]
机构
[1] Natl Inst Technol Tiruchirappalli, Dept Phys, Flexible & Multifunct Mat Device Lab, Lab FM2D, Tiruchirappalli 620015, Tamil Nadu, India
[2] Yeungnam Univ, Sch Mat Sci & Engn, Gyongsan 38541, South Korea
[3] Yeungnam Univ, Inst Mat Technol, Gyongsan 38541, South Korea
基金
新加坡国家研究基金会;
关键词
Magnetoelectric effect; Composite; Self -bias effect; Miniaturization; Permeability;
D O I
10.1016/j.jallcom.2023.170121
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetoelectric (ME) composites, which are magnetostrictive-piezoelectric composites, have garnered attention for use in various application fields owing to their large ME coupling compared with single-phase multiferroic materials. The maximum ME coupling is observed when an increased DC magnetic bias field is applied, which results in large devices with degraded sensitivity due to electromagnetic noise. To address this problem, a strong self-biased ME composite that generates the maximum ME response in a zero-bias field was proposed in this study. Highly self-biased ME composites were prepared by combining soft magnetic Ni and highly permeable Metglas magnetostrictive layers with a Pb(Mg1/3Nb2/3)O3-PbZrTiO3 piezoelectric single-crystal laminate structure and inducing a magnetization gradient. The maximum ME voltage value without a DC bias field was evaluated to be 4.2 V/cm center dot Oe for an MMNPNMM (M: Metglas foil, N: nickel, P: PMN-PZT) structure, which is 625 % higher than that of conventional ME composites. Therefore, the relatively bulky means of the DC-bias application on ME materials could be eliminated, resulting in a simple ME device with a small volume using the magnetization gradient concept.(c) 2023 Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials
    Jungho Ryu
    Shashank Priya
    Kenji Uchino
    Hyoun-Ee Kim
    Journal of Electroceramics, 2002, 8 : 107 - 119
  • [32] Shape demagnetization effect on layered magnetoelectric composites
    Pan DeAn
    Lu Jun
    Bai Yang
    Chu WuYang
    Qiao LiJie
    CHINESE SCIENCE BULLETIN, 2008, 53 (14): : 2124 - 2128
  • [33] Magnetoelectric Effect in Metglas/Piezoelectric Macrofiber Composites
    Grechishkin, R. M.
    Kaplunov, I. A.
    Ilyashenko, S. E.
    Lebedev, G. A.
    Malyshkina, O. V.
    Mamkina, N. O.
    Zalyotov, A. B.
    FERROELECTRICS, 2011, 424 : 78 - 85
  • [34] Domain walls, magnetization, and magnetoelectric effect in bismuth ferrite films
    Z. V. Gareeva
    A. K. Zvezdin
    Physics of the Solid State, 2012, 54 : 1070 - 1078
  • [35] A cost-effective self-biased magnetoelectric effect in SrFe12O19/Metglas/Pb(Zr,Ti)O3 laminates
    Ma, J. N.
    Xin, C. Z.
    Ma, J.
    Lin, Y. H.
    Nan, C. W.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (40)
  • [36] Modeling of magnetoelectric effect in ferromagnetic/piezoelectric multilayer composites
    Bichurin, MI
    Petrov, VM
    Srinivasan, G
    FERROELECTRICS, 2002, 280 : 331 - 341
  • [37] RESONANT GIANT MAGNETOELECTRIC EFFECT OF PIEZOELECTRIC/MAGNET COMPOSITES
    Xu, Kai
    He, Bin
    Du, Jian-ke
    Xing, Zeng-ping
    PROCEEDINGS OF THE 2012 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA12), 2012, : 260 - 265
  • [38] An analytical model for nonlinear magnetoelectric effect in laminated composites
    Shi, Yang
    Li, Ni
    Wang, Yongkun
    Ye, Junjie
    COMPOSITE STRUCTURES, 2021, 263
  • [39] Magnetoelectric effect analysis of magnetostrictive/piezoelectric laminated composites
    Zhou Yong
    Li Chun-Jian
    Pan Yu-Rong
    ACTA PHYSICA SINICA, 2018, 67 (07)
  • [40] Magnetostriction and magnetoelectric effect in intermetallic/relaxor/PVDF composites
    Guzdek, Piotr
    2013 IEEE INTERNATIONAL SYMPOSIUM ON THE APPLICATIONS OF FERROELECTRIC AND WORKSHOP ON THE PIEZORESPONSE FORCE MICROSCOPY (ISAF/PFM), 2013, : 218 - 221