Toward structuring real-world data: Deep learning for extracting oncology information from clinical text with patient-level supervision

被引:10
作者
Preston, Sam [1 ]
Wei, Mu [1 ]
Rao, Rajesh [1 ]
Tinn, Robert [1 ]
Usuyama, Naoto [1 ]
Lucas, Michael [1 ]
Gu, Yu [1 ]
Weerasinghe, Roshanthi [2 ]
Lee, Soohee [2 ]
Piening, Brian [3 ]
Tittel, Paul [3 ]
Valluri, Naveen [1 ]
Naumann, Tristan [1 ]
Bifulco, Carlo [3 ]
Poon, Hoifung [1 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] Providence St Josephs Hlth, Portland, OR USA
[3] Providence Genom & Earle A Chiles Res Inst, Portland, OR 97213 USA
来源
PATTERNS | 2023年 / 4卷 / 04期
关键词
data mining; DSML 2: Proof-of-concept: Data science output has been formulated; implemented; and tested for one domain/problem; E01.789.625; H02.403.429.515; L01.224.050.375.580; L01.313.500.750.280.199; medical oncology; natural language processing; neoplasm staging;
D O I
10.1016/j.patter.2023.100726
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most detailed patient information in real-world data (RWD) is only consistently available in free-text clinical documents. Manual curation is expensive and time consuming. Developing natural language processing (NLP) methods for structuring RWD is thus essential for scaling real-world evidence generation. We propose leveraging patient-level supervision from medical registries, which are often readily available and capture key patient information, for general RWD applications. We conduct an extensive study on 135,107 patients from the cancer registry of a large integrated delivery network (IDN) comprising healthcare systems in five western US states. Our deep-learning methods attain test area under the receiver operating characteristic curve (AUROC) values of 94%-99% for key tumor attributes and comparable performance on held-out data from separate health systems and states. Ablation results demonstrate the superiority of these advanced deep -learning methods. Error analysis shows that our NLP system sometimes even corrects errors in registrar labels.
引用
收藏
页数:12
相关论文
共 37 条
[1]  
[Anonymous], 2016, NAACL 2016, DOI DOI 10.18653/V1/N16-1174
[2]  
Bao YJ, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P1903
[3]  
Cho K., 2014, C EMP METH NAT LANG, DOI [10.48550/arXiv.1406.1078, DOI 10.48550/ARXIV.1406.1078]
[4]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
[5]   Certifying and Removing Disparate Impact [J].
Feldman, Michael ;
Friedler, Sorelle A. ;
Moeller, John ;
Scheidegger, Carlos ;
Venkatasubramanian, Suresh .
KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, :259-268
[6]   Limitations of Transformers on Clinical Text Classification [J].
Gao, Shang ;
Alawad, Mohammed ;
Young, M. Todd ;
Gounley, John ;
Schaefferkoetter, Noah ;
Yoon, Hong Jun ;
Wu, Xiao-Cheng ;
Durbin, Eric B. ;
Doherty, Jennifer ;
Stroup, Antoinette ;
Coyle, Linda ;
Tourassi, Georgia .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (09) :3596-3607
[7]   Classifying cancer pathology reports with hierarchical self-attention networks [J].
Gao, Shang ;
Qiu, John X. ;
Alawad, Mohammed ;
Hinkle, Jacob D. ;
Schaefferkoetter, Noah ;
Yoon, Hong-Jun ;
Christian, Blair ;
Fearn, Paul A. ;
Penberthy, Lynne ;
Wu, Xiao-Cheng ;
Coyle, Linda ;
Tourassi, Georgia ;
Ramanathan, Arvind .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 101
[8]   Word embeddings quantify 100 years of gender and ethnic stereotypes [J].
Garg, Nikhil ;
Schiebinger, Londa ;
Jurafsky, Dan ;
Zou, James .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (16) :E3635-E3644
[9]  
Gu Y., ACM Trans. Comput. Heal., V3, P1
[10]  
Hao B, 2020, 28 INT C COMP LING C, P657, DOI [10.18653/v1/2020.coling-main.57, DOI 10.18653/V1/2020.COLING-MAIN.57]