Mittag-Leffler stability of random-order fractional nonlinear uncertain dynamic systems with impulsive effects

被引:7
|
作者
Phu, Nguyen Dinh [1 ]
Hoa, Ngo Van [2 ,3 ]
机构
[1] Quang Trung Univ, Fac Engn Technol, Qui Nhon, Vietnam
[2] Van Lang Univ, Inst Computat Sci & Artificial Intelligence, Lab Appl & Ind Math, Ho Chi Minh City, Vietnam
[3] Van Lang Univ, Fac Basic Sci, Ho Chi Minh City, Vietnam
关键词
The ramdon-order Caputo fractional derivative; Fractional dynamic systems; Impulsive dynamic systems; Fractional Lyapunov method; DIFFERENTIAL-EQUATIONS; VARIABLE-ORDER; LYAPUNOV FUNCTIONS; STABILIZATION; EXISTENCE;
D O I
10.1007/s11071-023-08340-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the Mittag-Leffler stability (MLS) of nonlinear uncertain dynamic systems (NUDSs) with impulsive effects involving the random-order fractional derivative (ROFD) under the fuzzy concept. The major tool used in this paper is Lyapunov's direct method, which brings high efficiency in surveying the stability theory of dynamic systems. Some algebraic inequalities on the ROFD are established, which is necessary to study the MLS of NUDSs. Examples and simulations are also provided to demonstrate the effectiveness of the derived theoretical results.
引用
收藏
页码:9409 / 9430
页数:22
相关论文
共 50 条
  • [1] Mittag-Leffler stability of random-order fractional nonlinear uncertain dynamic systems with impulsive effects
    Nguyen Dinh Phu
    Ngo Van Hoa
    Nonlinear Dynamics, 2023, 111 : 9409 - 9430
  • [2] Mittag-Leffler stability of fractional order nonlinear dynamic systems
    Li, Yan
    Chen, YangQuan
    Podlubny, Igor
    AUTOMATICA, 2009, 45 (08) : 1965 - 1969
  • [3] Mittag-Leffler Stability of Impulsive Nonlinear Fractional-Order Systems with Time Delays
    Mathiyalagan, K.
    Ma, Yong-Ki
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (01) : 99 - 108
  • [4] MITTAG-LEFFLER STABILITY OF IMPULSIVE DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
    Stamova, Ivanka M.
    QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (03) : 525 - 535
  • [5] ADAPTIVE MITTAG-LEFFLER STABILIZATION OF A CLASS OF FRACTIONAL ORDER UNCERTAIN NONLINEAR SYSTEMS
    Wang, Qiao
    Zhang, Jianliang
    Ding, Dongsheng
    Qi, Donglian
    ASIAN JOURNAL OF CONTROL, 2016, 18 (06) : 2343 - 2351
  • [6] On Mittag-Leffler Stability of Fractional Order Difference Systems
    Wyrwas, Malgorzata
    Mozyrska, Dorota
    ADVANCES IN MODELLING AND CONTROL OF NON-INTEGER ORDER SYSTEMS, 2015, 320 : 209 - 220
  • [7] Generalized Mittag-Leffler Stability of Hilfer Fractional Order Nonlinear Dynamic System
    Wang, Guotao
    Qin, Jianfang
    Dong, Huanhe
    Guan, Tingting
    MATHEMATICS, 2019, 7 (06)
  • [8] Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 416 - 422
  • [9] Mittag-Leffler stability of nabla discrete fractional-order dynamic systems
    Wei, Yingdong
    Wei, Yiheng
    Chen, Yuquan
    Wang, Yong
    NONLINEAR DYNAMICS, 2020, 101 (01) : 407 - 417
  • [10] Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay
    Sadati, S. J.
    Baleanu, D.
    Ranjbar, A.
    Ghaderi, R.
    Abdeljawad , T.
    ABSTRACT AND APPLIED ANALYSIS, 2010,