How longitudinal data can contribute to our understanding of host genetic effects on the gut microbiome

被引:6
作者
Grieneisen, Laura [1 ]
Blekhman, Ran [2 ]
Archie, Elizabeth [3 ]
机构
[1] Univ British Columbia, Dept Biol, Okanagan Campus, Kelowna, BC, Canada
[2] Univ Chicago, Dept Med, Sect Genet Med, Chicago, IL USA
[3] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN USA
基金
美国国家科学基金会;
关键词
Gut microbiome; host genetics; time series; host-microbiome interactions; heritability; plasticity; HERITABILITY; DIVERSITY; STABILITY; GENOME; DETERMINANTS; RESILIENCE; ANIMALS;
D O I
10.1080/19490976.2023.2178797
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
A key component of microbiome research is understanding the role of host genetic influence on gut microbial composition. However, it can be difficult to link host genetics with gut microbial composition because host genetic similarity and environmental similarity are often correlated. Longitudinal microbiome data can supplement our understanding of the relative role of genetic processes in the microbiome. These data can reveal environmentally contingent host genetic effects, both in terms of controlling for environmental differences and in comparing how genetic effects differ by environment. Here, we explore four research areas where longitudinal data could lend new insights into host genetic effects on the microbiome: microbial heritability, microbial plasticity, microbial stability, and host and microbiome population genetics. We conclude with a discussion of methodological considerations for future studies.
引用
收藏
页数:12
相关论文
共 116 条
  • [21] Genome-Wide Association Studies of the Human Gut Microbiota
    Davenport, Emily R.
    Cusanovich, Darren A.
    Michelini, Katelyn
    Barreiro, Luis B.
    Ober, Carole
    Gilad, Yoav
    [J]. PLOS ONE, 2015, 10 (11):
  • [22] Host lifestyle affects human microbiota on daily timescales
    David, Lawrence A.
    Materna, Arne C.
    Friedman, Jonathan
    Campos-Baptista, Maria I.
    Blackburn, Matthew C.
    Perrotta, Allison
    Erdman, Susan E.
    Alm, Eric J.
    [J]. GENOME BIOLOGY, 2014, 15 (07):
  • [23] Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data
    Davis, Nicole M.
    Proctor, Diana M.
    Holmes, Susan P.
    Relman, David A.
    Callahan, Benjamin J.
    [J]. MICROBIOME, 2018, 6
  • [24] Quantitative genetic methods depending on the nature of the phenotypic trait
    de Villemereuil, Pierre
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2018, 1422 (01) : 29 - 47
  • [25] General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models
    de Villemereuil, Pierre
    Schielzeth, Holger
    Nakagawa, Shinichi
    Morrissey, Michael
    [J]. GENETICS, 2016, 204 (03) : 1281 - +
  • [26] Genetic influences on the human oral microbiome
    Demmitt, Brittany A.
    Corley, Robin P.
    Huibregtse, Brooke M.
    Keller, Matthew C.
    Hewitt, John K.
    McQueen, Matthew B.
    Knight, Rob
    McDermott, Ivy
    Krauter, Kenneth S.
    [J]. BMC GENOMICS, 2017, 18
  • [27] It's the song, not the singer: an exploration of holobiosis and evolutionary theory
    Doolittle, W. Ford
    Booth, Austin
    [J]. BIOLOGY & PHILOSOPHY, 2017, 32 (01) : 5 - 24
  • [28] Enav H, 2021, bioRxiv, DOI [10.1101/2021.10.06.463341, 10.1101/2021.10.06.463341, DOI 10.1101/2021.10.06.463341, 10.06.463341]
  • [29] Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health
    Fassarella, Marina
    Blaak, Ellen E.
    Penders, John
    Nauta, Arjen
    Smidt, Hauke
    Zoetendal, Erwin G.
    [J]. GUT, 2021, 70 (03) : 595 - 605
  • [30] BiomeHorizon: Visualizing Microbiome Time Series Data in R
    Fink, Isaac
    Abdill, Richard J.
    Blekhman, Ran
    Grieneisen, Laura
    [J]. MSYSTEMS, 2022, 7 (03)