A Non-aligning Variant of Generalized Turan Problems

被引:0
作者
Gerbner, Daniel [1 ]
机构
[1] Alfred Renyi Inst Math, Budapest, Hungary
关键词
INDUCIBILITY; COPIES; NUMBER;
D O I
10.1007/s00026-023-00640-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the so-called generalized Turan problems we study the largest number of copies of H in an n-vertex F-free graph G. Here we introduce a variant, where F is not forbidden, but we restrict how copies of H and F can be placed in G. More precisely, given an integer n and graphs H and F, what is the largest number of copies of H in an n-vertex graph such that the vertex set of that copy does not contain and is not contained in the vertex set of a copy of F? We solve this problem for some instances, give bounds in other instances, and we use our results to determine the generalized Turan number for some pairs of graphs.
引用
收藏
页码:351 / 366
页数:16
相关论文
共 27 条
[21]  
Lazebnik F, 1999, DISCRETE MATH, V197, P503
[22]   INDUCIBILITY OF GRAPHS [J].
PIPPENGER, N ;
GOLUMBIC, MC .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (03) :189-203
[23]   Some results on k-Turan-good graphs [J].
Qian, Bingchen ;
Xie, Chengfei ;
Ge, Gennian .
DISCRETE MATHEMATICS, 2021, 344 (09)
[24]   A remark on the number of complete and empty subgraphs [J].
Schelp, RH ;
Thomason, A .
COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (02) :217-219
[25]  
Turan P., 1954, Colloq. Math, V3, P50
[26]  
Turan P., 1941, MAT FIZ LAPOK, V48, P436
[27]  
Zykov A. A., 1949, Mat. Sb. N.S, V24, P163