Distributed Feedback Lasers by Thermal Nanoimprint of Perovskites Using Gelatin Gratings

被引:16
作者
Allegro, Isabel [1 ]
Bonal, Victor [2 ,3 ]
Mamleyev, Emil R. [4 ]
Villalvilla, Jose M. [2 ,3 ]
Quintana, Jose A. [5 ,6 ]
Jin, Qihao [1 ]
Diaz-Garcia, Maria A. [2 ,3 ]
Lemmer, Uli [1 ,4 ]
机构
[1] Karlsruhe Inst Technol, Light Technol Inst, D-76131 Karlsruhe, Germany
[2] Univ Alicante, Dept Fis Aplicada, Alicante 03080, Spain
[3] Univ Alicante, Inst Univ Mat Alicante IUMA, Alicante 03080, Spain
[4] Karlsruhe Inst Technol, Inst Microstruct Technol, D-76344 Eggenstein Leopoldshafen, Germany
[5] Univ Alicante, Dept Opt Farmacol & Anat, Alicante 03080, Spain
[6] Univ Alicante, IUMA, Alicante 03080, Spain
关键词
nanoimprint lithography; distributed feedback lasers; perovskite films; polymer gratings; ROOM-TEMPERATURE; HALIDE PEROVSKITES; THRESHOLD; LITHOGRAPHY; OPERATION; QUASI-2D; DESIGN; LEAD;
D O I
10.1021/acsami.2c22920
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To date, thermal nanoimprint lithography (NIL) for patterning hybrid perovskites has always involved an intricate etching step of a hard stamp material or its master. Here, we demonstrate for the first time the successful nanopatterning of a perovskite film by NIL with a low-cost polymeric stamp. The stamp consists of a dichromated gelatin grating structured by holographic lithography. The one-dimensional grating is imprinted into a perovskite film at 95 degrees C and 90 MPa for 10 min, resulting in a high quality second-order distributed feedback (DFB) laser. The laser exhibits an excellent performance with a threshold of 81 mu J/cm2, a line width of 0.32 nm, and a pronounced linear polarization. This novel approach enables cost-effective fabrication of high-quality DFB lasers compatible with different perovskite compositions and photonic nanostructures for a wide range of applications.
引用
收藏
页码:8436 / 8445
页数:10
相关论文
共 81 条
[1]   Bimolecular and Auger Recombination in Phase-Stable Perovskite Thin Films from Cryogenic to Room Temperature and Their Effect on the Amplified Spontaneous Emission Threshold [J].
Allegro, Isabel ;
Li, Yang ;
Richards, Bryce S. ;
Paetzold, Ulrich W. ;
Lemmer, Uli ;
Howard, Ian A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (09) :2293-2298
[2]  
[Anonymous], 2022, CSEM EPFL ACHIEVE 31
[3]   Micro Lasers by Scalable Lithography of Metal-Halide Perovskites [J].
Bar-On, Ofer ;
Brenner, Philipp ;
Lemmer, Uli ;
Scheuer, Jacob .
ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (12)
[4]   Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser [J].
Barlow, GF ;
Shore, A ;
Turnbull, GA ;
Samuel, IDW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (12) :2142-2150
[5]   Metal-halide perovskite-based edge emitting lasers [J].
Basak, Supratim ;
Bar-On, Ofer ;
Scheuer, Jacob .
OPTICAL MATERIALS EXPRESS, 2022, 12 (02) :375-382
[6]  
Bonal V., ADV OPT MATER
[7]   N,N′-Bis(3-methylphenyl)-N,N′-dyphenylbenzidine Based Distributed Feedback Lasers with Holographically Fabricated Polymeric Resonators [J].
Bonal, Victor ;
Quintana, Jose A. ;
Villalvilla, Jose M. ;
Boj, Pedro G. ;
Munoz-Marmol, Rafael ;
Mira-Martinez, Jose C. ;
Diaz-Garcia, Maria A. .
POLYMERS, 2021, 13 (21)
[8]   Controlling the emission properties of solution-processed organic distributed feedback lasers through resonator design [J].
Bonal, Victor ;
Quintana, Jose A. ;
Villalvilla, Jose M. ;
Boj, Pedro G. ;
Diaz-Garcia, Maria A. .
SCIENTIFIC REPORTS, 2019, 9 (1) :11159
[9]   Comment on "Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers" [J].
Brenner, P. ;
Paetzold, U. W. ;
Turnbull, G. A. ;
Giebink, N. C. ;
Samuel, I. D. W. ;
Lemmer, U. ;
Howard, I. A. .
ACS NANO, 2019, 13 (11) :12257-12258
[10]   Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites [J].
Brenner, Philipp ;
Bar-On, Ofer ;
Jakoby, Marius ;
Allegro, Isabel ;
Richards, Bryce S. ;
Paetzold, Ulrich W. ;
Howard, Ian A. ;
Scheuer, Jacob ;
Lemmer, Uli .
NATURE COMMUNICATIONS, 2019, 10 (1)