An integrated methodology for dynamic risk prediction of thermal runaway in lithium-ion batteries

被引:44
作者
Meng, Huixing [1 ,5 ]
Yang, Qiaoqiao [1 ]
Zio, Enrico [2 ,3 ]
Xing, Jinduo [4 ]
机构
[1] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
[2] MINES ParisTech PSL Univ Paris, Ctr Rech Risques & Crises CRC, Paris, France
[3] Politecn Milan, DOE, Milan, Italy
[4] Beijing Univ Civil Engn & Architecture, Sch Mech Elect & Vehicle Engn, Beijing 100044, Peoples R China
[5] 5 South Zhongguancun St, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Thermal runaway; Risk prediction; Dynamic Bayesian network; Support vector regression; ELECTRIC VEHICLES; HUMAN RELIABILITY; SAFETY ANALYSIS; NEURAL-NETWORK; FAULT-TREE; SYSTEMS; ISSUES; MODEL; AHP;
D O I
10.1016/j.psep.2023.01.021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The risk of thermal runaway in lithium-ion battery (LIB) attracts significant attention from domains of society, industry, and academia. However, the thermal runaway prediction in the framework of system safety requires further efforts. In this paper, we propose a methodology for dynamic risk prediction by integrating fault tree (FT), dynamic Bayesian network (DBN) and support vector regression (SVR). FT graphically describes the logic of mechanism of thermal runaway. DBN allows considering multiple states and uncertain inference for providing quantitative results of the risk evolution. SVR is subsequently utilized for predicting the risk from the DBN estimation. The proposed methodology can be applied for risk early warning of LIB thermal runaway.
引用
收藏
页码:385 / 395
页数:11
相关论文
共 50 条
[21]   In Situ Thermal Runaway Detection in Lithium-Ion Batteries with an Integrated Internal Sensor [J].
Parekh, Mihit H. ;
Li, Bing ;
Palanisamy, Manikandan ;
Adams, Thomas E. ;
Tomar, Vikas ;
Pol, Vilas G. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (08) :7997-8008
[22]   Multi-physics simulation and risk analysis of internal thermal runaway propagation in lithium-ion batteries [J].
Ding, Yan ;
Lu, Li ;
Zhang, Huangwei .
ETRANSPORTATION, 2025, 24
[23]   Numerical analysis of thermal runaway process of lithium-ion batteries considering combustion [J].
Kim, Ryang Hoon ;
Lee, Do Hyun ;
Kim, Young Kyo ;
Chu, Chan Ho ;
Lee, Yong Gyun ;
Kim, Dong Kyu .
JOURNAL OF ENERGY STORAGE, 2024, 78
[24]   Progress on thermal runaway propagation characteristics and prevention strategies of lithium-ion batteries [J].
Ma, Ruixin ;
Liu, Jizhen ;
Wang, Shuangfeng ;
Rao, Zhonghao ;
Cai, Yang ;
Wu, Weixiong .
CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (23) :2991-3004
[25]   Mechanical properties and thermal runaway study of automotive lithium-ion power batteries [J].
Xu, Yalong ;
Liu, Fei ;
Guo, Jiale ;
Li, Meng ;
Han, Bing .
IONICS, 2022, 28 (01) :107-116
[26]   Application of artificial neural network for the prediction of thermal runaway in lithium-ion batteries [J].
Lekoane, Seketu ;
Oboirien, Bilainu ;
Seedat, Naadhira .
JOURNAL OF ENERGY STORAGE, 2024, 101
[27]   MODELING THERMAL RUNAWAY IN PRISMATIC LITHIUM-ION BATTERIES [J].
Khan, Shehzad ;
Anwar, Sohail ;
Casa, Jairo ;
Hasnain, Muhammad ;
Ahmed, Hossain ;
Sezer, Hayri .
PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 10, 2023,
[28]   A Critical Review of Thermal Runaway Prediction and Early-Warning Methods for Lithium-Ion Batteries [J].
Zhang, Xi ;
Chen, Shun ;
Zhu, Jingzhe ;
Gao, Yizhao .
ENERGY MATERIAL ADVANCES, 2023, 4
[29]   Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components [J].
Ren, Dongsheng ;
Liu, Xiang ;
Feng, Xuning ;
Lu, Languang ;
Ouyang, Minggao ;
Li, Jianqiu ;
He, Xiangming .
APPLIED ENERGY, 2018, 228 :633-644
[30]   Risk analysis method for thermal runaway gas toxicity of lithium-ion batteries [J].
Zhang Q. ;
Qu Y. ;
Liu T. .
Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (01) :12-19