An integrated methodology for dynamic risk prediction of thermal runaway in lithium-ion batteries

被引:37
|
作者
Meng, Huixing [1 ,5 ]
Yang, Qiaoqiao [1 ]
Zio, Enrico [2 ,3 ]
Xing, Jinduo [4 ]
机构
[1] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
[2] MINES ParisTech PSL Univ Paris, Ctr Rech Risques & Crises CRC, Paris, France
[3] Politecn Milan, DOE, Milan, Italy
[4] Beijing Univ Civil Engn & Architecture, Sch Mech Elect & Vehicle Engn, Beijing 100044, Peoples R China
[5] 5 South Zhongguancun St, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Thermal runaway; Risk prediction; Dynamic Bayesian network; Support vector regression; ELECTRIC VEHICLES; HUMAN RELIABILITY; SAFETY ANALYSIS; NEURAL-NETWORK; FAULT-TREE; SYSTEMS; ISSUES; MODEL; AHP;
D O I
10.1016/j.psep.2023.01.021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The risk of thermal runaway in lithium-ion battery (LIB) attracts significant attention from domains of society, industry, and academia. However, the thermal runaway prediction in the framework of system safety requires further efforts. In this paper, we propose a methodology for dynamic risk prediction by integrating fault tree (FT), dynamic Bayesian network (DBN) and support vector regression (SVR). FT graphically describes the logic of mechanism of thermal runaway. DBN allows considering multiple states and uncertain inference for providing quantitative results of the risk evolution. SVR is subsequently utilized for predicting the risk from the DBN estimation. The proposed methodology can be applied for risk early warning of LIB thermal runaway.
引用
收藏
页码:385 / 395
页数:11
相关论文
共 50 条
  • [1] A review on thermal runaway warning technology for lithium-ion batteries
    Hu, Dunan
    Huang, Sheng
    Wen, Zhen
    Gu, Xiuquan
    Lu, Jianguo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 206
  • [2] Prevent thermal runaway of lithium-ion batteries with minichannel cooling
    Xu, Jian
    Lan, Chuanjin
    Qiao, Yu
    Ma, Yanbao
    APPLIED THERMAL ENGINEERING, 2017, 110 : 883 - 890
  • [3] A model for the prediction of thermal runaway in lithium-ion batteries
    Azuaje-Berbeci, Bernardo J.
    Ertan, H. Bulent
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [4] Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries
    McKerracher, Rachel D.
    Guzman-Guemez, Jorge
    Wills, Richard G. A.
    Sharkh, Suleiman M.
    Kramer, Denis
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05):
  • [5] Research on overcharge mitigations and thermal runaway risk of 18650 lithium-ion batteries
    Yan, W. H.
    Huang, W. X.
    Yang, Y.
    Wei, Z. W.
    Zhen, H. S.
    Lin, Y.
    JOURNAL OF ENERGY STORAGE, 2025, 120
  • [6] Mitigating Thermal Runaway of Lithium-Ion Batteries
    Feng, Xuning
    Ren, Dongsheng
    He, Xiangming
    Ouyang, Minggao
    JOULE, 2020, 4 (04) : 743 - 770
  • [7] Suppressing Thermal Runaway of Lithium-ion Batteries by Using Insulation Material
    Wu, Zhuoyan
    Jia, Jun
    Yin, Likun
    Zhong, Weidong
    Kang, Zhe
    Jiang, Zhuoyu
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1838 - 1843
  • [8] A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries
    Shahid, Seham
    Agelin-Chaab, Martin
    ENERGY CONVERSION AND MANAGEMENT-X, 2022, 16
  • [9] Investigating the Thermal Runaway Behavior and Early Warning Characteristics of Lithium-Ion Batteries by Simulation
    Wang, Xiaoyong
    Mi, Yuanze
    Zhao, Zihao
    Cai, Jiawen
    Yang, Donghui
    Tu, Fangfang
    Jiang, Yuanyang
    Xiang, Jiayuan
    Mi, Shengrun
    Wang, Ruobin
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (12) : 7367 - 7379
  • [10] Numerical analysis of kinetic mechanisms for battery thermal runaway prediction in lithium-ion batteries
    Garcia, Antonio
    Monsalve-Serrano, Javier
    Lago Sari, Rafael
    Fogue Robles, Alvaro
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2022, 23 (10) : 1691 - 1707