A note on the width of sparse random graphs

被引:1
作者
Do, Tuan Anh [1 ]
Erde, Joshua [1 ,2 ]
Kang, Mihyun [1 ]
机构
[1] Graz Univ Technol, Inst Discrete Math, Graz, Austria
[2] Graz Univ Technol, Inst Discrete Math, Steyrergasse 30, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
graph expansion; random graph; rank-width; tree-width; RANK-WIDTH; EXPANDERS; MINORS;
D O I
10.1002/jgt.23081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph G(n,p) when p=(1+& varepsilon;)/(n) for & varepsilon;>0 constant. Our proofs avoid the use, as a black box, of a result of Benjamini, Kozma and Wormald on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on & varepsilon;. Finally, we also consider the width of the random graph in the weakly supercritical regime, where & varepsilon;=o(1) and & varepsilon;(3)n ->infinity. In this regime, we determine, up to a constant multiplicative factor, the rank- and tree-width of G(n,p) as a function of n and & varepsilon;.
引用
收藏
页码:273 / 295
页数:23
相关论文
共 50 条
  • [31] Monadic second-order properties of very sparse random graphs
    Ostrovsky, L. B.
    Zhukovskii, M. E.
    ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (11) : 2087 - 2101
  • [32] A note on planar graphs with large width parameters and small grid-minors
    Grigoriev, Alexander
    Marchal, Bert
    Usotskaya, Natalya
    Todinca, Ioan
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1262 - 1269
  • [33] A Note on the Existence of Fractional f-factors in Random Graphs
    Cai, Jian-sheng
    Wang, Xiao-yang
    Yan, Gui-ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (03): : 677 - 680
  • [34] Large deviations of the greedy independent set algorithm on sparse random graphs
    Kolesnik, Brett
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (02) : 353 - 363
  • [35] The NLC-width and clique-width for powers of graphs of bounded tree-width
    Gurski, Frank
    Wanke, Egon
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 583 - 595
  • [36] A Note on Total and List Edge-Colouring of Graphs of Tree-Width 3
    Lang, Richard
    GRAPHS AND COMBINATORICS, 2016, 32 (03) : 1055 - 1064
  • [37] Canonisation and Definability for Graphs of Bounded Rank Width
    Grohe, Martin
    Neuen, Daniel
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2023, 24 (01)
  • [38] Fast and Optimal Extraction for Sparse Equality Graphs
    Goharshady, Amir Kafshdar
    Lam, Chun Kit
    Parreaux, Lionel
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2024, 8 (OOPSLA):
  • [39] FINDING AND USING EXPANDERS IN LOCALLY SPARSE GRAPHS
    Krivelevich, Michael
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (01) : 611 - 623
  • [40] Solving Problems on Graphs of High Rank-Width
    Eduard Eiben
    Robert Ganian
    Stefan Szeider
    Algorithmica, 2018, 80 : 742 - 771