A note on the width of sparse random graphs

被引:1
作者
Do, Tuan Anh [1 ]
Erde, Joshua [1 ,2 ]
Kang, Mihyun [1 ]
机构
[1] Graz Univ Technol, Inst Discrete Math, Graz, Austria
[2] Graz Univ Technol, Inst Discrete Math, Steyrergasse 30, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
graph expansion; random graph; rank-width; tree-width; RANK-WIDTH; EXPANDERS; MINORS;
D O I
10.1002/jgt.23081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph G(n,p) when p=(1+& varepsilon;)/(n) for & varepsilon;>0 constant. Our proofs avoid the use, as a black box, of a result of Benjamini, Kozma and Wormald on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on & varepsilon;. Finally, we also consider the width of the random graph in the weakly supercritical regime, where & varepsilon;=o(1) and & varepsilon;(3)n ->infinity. In this regime, we determine, up to a constant multiplicative factor, the rank- and tree-width of G(n,p) as a function of n and & varepsilon;.
引用
收藏
页码:273 / 295
页数:23
相关论文
共 50 条
  • [21] THE CONTINUUM LIMIT OF THE KURAMOTO MODEL ON SPARSE RANDOM GRAPHS
    Medvedev, Georgi S.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (04) : 883 - 898
  • [22] Comparing Linear Width Parameters for Directed Graphs
    Gurski, Frank
    Rehs, Carolin
    THEORY OF COMPUTING SYSTEMS, 2019, 63 (06) : 1358 - 1387
  • [23] A Note on the Vertex Degree Distribution of Random Intersection Graphs
    Mindaugas Bloznelis
    Lithuanian Mathematical Journal, 2020, 60 : 452 - 455
  • [24] A Note on the Vertex Degree Distribution of Random Intersection Graphs
    Bloznelis, Mindaugas
    LITHUANIAN MATHEMATICAL JOURNAL, 2020, 60 (04) : 452 - 455
  • [25] Spanners in sparse graphs
    Dragan, Feodor F.
    Fomin, Fedor V.
    Golovach, Petr A.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2011, 77 (06) : 1108 - 1119
  • [26] The Rank-Width of Edge-Coloured Graphs
    Kante, Mamadou Moustapha
    Rao, Michael
    THEORY OF COMPUTING SYSTEMS, 2013, 52 (04) : 599 - 644
  • [27] Boolean-width of graphs
    Bui-Xuan, Binh-Minh
    Telle, Jan Arne
    Vatshelle, Martin
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (39) : 5187 - 5204
  • [28] Boolean-Width of Graphs
    Bui-Xuan, B. -M.
    Telle, J. A.
    Vatshelle, M.
    PARAMETERIZED AND EXACT COMPUTATION, 2009, 5917 : 61 - 74
  • [29] A Note on the Existence of Fractional f-factors in Random Graphs
    Jian-sheng CAI
    Xiao-yang WANG
    Gui-ying YAN
    Acta Mathematicae Applicatae Sinica, 2014, (03) : 677 - 680
  • [30] A note on the existence of fractional f-factors in random graphs
    Jian-sheng Cai
    Xiao-yang Wang
    Gui-ying Yan
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 677 - 680