A note on the width of sparse random graphs

被引:1
|
作者
Do, Tuan Anh [1 ]
Erde, Joshua [1 ,2 ]
Kang, Mihyun [1 ]
机构
[1] Graz Univ Technol, Inst Discrete Math, Graz, Austria
[2] Graz Univ Technol, Inst Discrete Math, Steyrergasse 30, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
graph expansion; random graph; rank-width; tree-width; RANK-WIDTH; EXPANDERS; MINORS;
D O I
10.1002/jgt.23081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph G(n,p) when p=(1+& varepsilon;)/(n) for & varepsilon;>0 constant. Our proofs avoid the use, as a black box, of a result of Benjamini, Kozma and Wormald on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on & varepsilon;. Finally, we also consider the width of the random graph in the weakly supercritical regime, where & varepsilon;=o(1) and & varepsilon;(3)n ->infinity. In this regime, we determine, up to a constant multiplicative factor, the rank- and tree-width of G(n,p) as a function of n and & varepsilon;.
引用
收藏
页码:273 / 295
页数:23
相关论文
共 50 条
  • [21] NOTE ON RANDOM SIGNED GRAPHS
    PHANEENDHRUDU, V
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1979, 2 (07): : 269 - 270
  • [22] A Note on Treewidth in Random Graphs
    Wang, Chaoyi
    Liu, Tian
    Cui, Peng
    Xu, Ke
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, 2011, 6831 : 491 - +
  • [23] Rainbow Connection of Sparse Random Graphs
    Frieze, Alan
    Tsourakakis, Charalampos E.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [24] Implementing huge sparse random graphs
    Naor, Moni
    Nussboim, Asaf
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2007, 4627 : 596 - +
  • [25] INDUCED TREES IN SPARSE RANDOM GRAPHS
    DELAVEGA, WF
    GRAPHS AND COMBINATORICS, 1986, 2 (03) : 227 - 231
  • [26] LONG PATHS IN SPARSE RANDOM GRAPHS
    BOLLOBAS, B
    COMBINATORICA, 1982, 2 (03) : 223 - 228
  • [27] The largest eigenvalue of sparse random graphs
    Krivelevich, M
    Sudakov, B
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (01): : 61 - 72
  • [28] Largest sparse subgraphs of random graphs
    Fountoulakis, Nikolaos
    Kang, Ross J.
    McDiarmid, Colin
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 232 - 244
  • [29] LARGE HOLES IN SPARSE RANDOM GRAPHS
    FRIEZE, AM
    JACKSON, B
    COMBINATORICA, 1987, 7 (03) : 265 - 274
  • [30] Hamiltonian completions of sparse random graphs
    Gamarnik, D
    Sviridenko, M
    DISCRETE APPLIED MATHEMATICS, 2005, 152 (1-3) : 139 - 158