A note on the width of sparse random graphs

被引:1
|
作者
Do, Tuan Anh [1 ]
Erde, Joshua [1 ,2 ]
Kang, Mihyun [1 ]
机构
[1] Graz Univ Technol, Inst Discrete Math, Graz, Austria
[2] Graz Univ Technol, Inst Discrete Math, Steyrergasse 30, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
graph expansion; random graph; rank-width; tree-width; RANK-WIDTH; EXPANDERS; MINORS;
D O I
10.1002/jgt.23081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph G(n,p) when p=(1+& varepsilon;)/(n) for & varepsilon;>0 constant. Our proofs avoid the use, as a black box, of a result of Benjamini, Kozma and Wormald on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on & varepsilon;. Finally, we also consider the width of the random graph in the weakly supercritical regime, where & varepsilon;=o(1) and & varepsilon;(3)n ->infinity. In this regime, we determine, up to a constant multiplicative factor, the rank- and tree-width of G(n,p) as a function of n and & varepsilon;.
引用
收藏
页码:273 / 295
页数:23
相关论文
共 50 条
  • [1] Rank-width of random graphs
    Lee, Choongbum
    Lee, Joonkyung
    Oum, Sang-il
    JOURNAL OF GRAPH THEORY, 2012, 70 (03) : 339 - 347
  • [2] The diameter of sparse random graphs
    Fernholz, Daniel
    Ramachandran, Vijaya
    RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (04) : 482 - 516
  • [3] Twin-width of random graphs
    Ahn, Jungho
    Chakraborti, Debsoumya
    Hendrey, Kevin
    Kim, Donggyu
    Oum, Sang-il
    RANDOM STRUCTURES & ALGORITHMS, 2024, 65 (04) : 794 - 831
  • [5] The largest hole in sparse random graphs
    Draganic, Nemanja
    Glock, Stefan
    Krivelevich, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (04) : 666 - 677
  • [6] Large hypertree width for sparse random hypergraphs
    Liu, Tian
    Wang, Chaoyi
    Xu, Ke
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (03) : 531 - 540
  • [7] Recent developments on graphs of bounded clique-width
    Kaminski, Marcin
    Lozin, Vadim V.
    Milanic, Martin
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (12) : 2747 - 2761
  • [8] On the tree-depth and tree-width in heterogeneous random graphs
    Shang, Yilun
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2022, 98 (09) : 78 - 83
  • [9] Assortativity and clustering of sparse random intersection graphs
    Bloznelis, Mindaugas
    Jaworski, Jerzy
    Kurauskas, Valentas
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 24
  • [10] Matching algorithms are fast in sparse random graphs
    Bast, H
    Mehlhorn, K
    Schäfer, G
    Tamaki, H
    THEORY OF COMPUTING SYSTEMS, 2006, 39 (01) : 3 - 14