Radiomics Prediction of Muscle Invasion in Bladder Cancer Using Semi-Automatic Lesion Segmentation of MRI Compared with Manual Segmentation

被引:4
作者
Ye, Yaojiang [1 ]
Luo, Zixin [2 ]
Qiu, Zhengxuan [2 ]
Cao, Kangyang [2 ]
Huang, Bingsheng [2 ]
Deng, Lei [1 ]
Zhang, Weijing [3 ]
Liu, Guoqing [4 ]
Zou, Yujian [1 ]
Zhang, Jian [5 ,6 ]
Li, Jianpeng [1 ]
机构
[1] Southern Med Univ, Affiliated Hosp 10, Dongguan Peoples Hosp, Dept Radiol, Dongguan 523059, Peoples R China
[2] Shenzhen Univ, Sch Biomed Engn, Med Sch, Med AI Lab, Shenzhen 518060, Peoples R China
[3] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Imaging Dept, State Key Lab Oncol South China,Canc Ctr, Guangzhou 510060, Peoples R China
[4] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[5] Shenzhen Univ, Med Sch, Shenzhen 518060, Peoples R China
[6] Shenzhen Fundamental Res Inst, Shenzhen Hong Kong Inst Brain Sci, Shenzhen 518060, Peoples R China
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 12期
关键词
magnetic resonance imaging; urinary bladder neoplasms; radiomics; muscles; semi-automatic segmentation;
D O I
10.3390/bioengineering10121355
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Conventional radiomics analysis requires the manual segmentation of lesions, which is time-consuming and subjective. This study aimed to assess the feasibility of predicting muscle invasion in bladder cancer (BCa) with radiomics using a semi-automatic lesion segmentation method on T2-weighted images. Cases of non-muscle-invasive BCa (NMIBC) and muscle-invasive BCa (MIBC) were pathologically identified in a training cohort and in internal and external validation cohorts. For bladder tumor segmentation, a deep learning-based semi-automatic model was constructed, while manual segmentation was performed by a radiologist. Semi-automatic and manual segmentation results were respectively used in radiomics analyses to distinguish NMIBC from MIBC. An equivalence test was used to compare the models' performance. The mean Dice similarity coefficients of the semi-automatic segmentation method were 0.836 and 0.801 in the internal and external validation cohorts, respectively. The area under the receiver operating characteristic curve (AUC) were 1.00 (0.991) and 0.892 (0.894) for the semi-automated model (manual) on the internal and external validation cohort, respectively (both p < 0.05). The average total processing time for semi-automatic segmentation was significantly shorter than that for manual segmentation (35 s vs. 92 s, p < 0.001). The BCa radiomics model based on semi-automatic segmentation method had a similar diagnostic performance as that of manual segmentation, while being less time-consuming and requiring fewer manual interventions.
引用
收藏
页数:17
相关论文
共 47 条
[1]   CT texture analysis for prediction of EGFR mutational status and ALK rearrangement in patients with non-small cell lung cancer [J].
Agazzi, Giorgio Maria ;
Ravanelli, Marco ;
Roca, Elisa ;
Medicina, Daniela ;
Balzarini, Piera ;
Pessina, Carlotta ;
Vermi, William ;
Berruti, Alfredo ;
Maroldi, Roberto ;
Farina, Davide .
RADIOLOGIA MEDICA, 2021, 126 (06) :786-794
[2]   How to Demonstrate Similarity by Using Noninferiority and Equivalence Statistical Testing in Radiology Research [J].
Ahn, Soyeon ;
Park, Seong Ho ;
Lee, Kyoung Ho .
RADIOLOGY, 2013, 267 (02) :328-338
[3]   European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ) [J].
Babjuk, Marko ;
Burger, Maximilian ;
Capoun, Otakar ;
Cohen, Daniel ;
Comperat, Eva M. ;
Escrig, Jose L. Dominguez ;
Gontero, Paolo ;
Liedberg, Fredrik ;
Masson-Lecomte, Alexandra ;
Mostafid, A. Hugh ;
Palou, Joan ;
van Rhijn, Bas W. G. ;
Roupret, Morgan ;
Shariat, Shahrokh F. ;
Seisen, Thomas ;
Soukup, Viktor ;
Sylvester, Richard J. .
EUROPEAN UROLOGY, 2022, 81 (01) :75-94
[4]   Diagnostic accuracy of MRI textural analysis in the classification of breast tumors [J].
Brown, Ann L. ;
Jeong, Joanna ;
Wahab, Rifat A. ;
Zhang, Bin ;
Mahoney, Mary C. .
CLINICAL IMAGING, 2021, 77 :86-91
[5]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[6]   Radiomics-based model for predicting pathological complete response to neoadjuvant chemotherapy in muscle-invasive bladder cancer [J].
Choi, S. J. ;
Park, K. J. ;
Heo, C. ;
Park, B. W. ;
Kim, M. ;
Kim, J. K. .
CLINICAL RADIOLOGY, 2021, 76 (08) :627.e13-627.e21
[7]   Fully automated bladder tumor segmentation from T2 MRI images using 3D U-Net algorithm [J].
Coroama, Diana Mihaela ;
Diosan, Laura ;
Telecan, Teodora ;
Andras, Iulia ;
Crisan, Nicolae ;
Medan, Paul ;
Andreica, Anca ;
Caraiani, Cosmin ;
Lebovici, Andrei ;
Boca, Bianca ;
Balint, Zoltan .
FRONTIERS IN ONCOLOGY, 2023, 13
[8]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[9]   Repeat Transurethral Resection in Non-muscle-invasive Bladder Cancer: A Systematic Review [J].
Cumberbatch, Marcus G. K. ;
Foerster, Beat ;
Catto, James W. F. ;
Kamat, Ashish M. ;
Kassouf, Wassim ;
Jubber, Ibrahim ;
Shariat, Shahrokh F. ;
Sylvester, Richard J. ;
Gontero, Paolo .
EUROPEAN UROLOGY, 2018, 73 (06) :925-933
[10]   Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics [J].
Dercle, Laurent ;
Fronheiser, Matthew ;
Lu, Lin ;
Du, Shuyan ;
Hayes, Wendy ;
Leung, David K. ;
Roy, Amit ;
Wilkerson, Julia ;
Guo, Pingzhen ;
Fojo, Antonio T. ;
Schwartz, Lawrence H. ;
Zhao, Binsheng .
CLINICAL CANCER RESEARCH, 2020, 26 (09) :2151-2162