A computational and experimental mechanical study of nanocomposites for 3D printed scaffolds with a new geometry

被引:2
|
作者
Kallivokas, S., V [1 ]
Kontaxis, L. [1 ,2 ]
Kakkos, I
Deligianni, D. [2 ]
Kostopoulos, V [2 ]
Matsopoulos, G. K. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Biomed Engn Lab, Zografos 15773, Greece
[2] Univ Patras, Mech Engn Dept, Univ Campus, Rio Achaia 26504, Greece
来源
2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC | 2023年
关键词
DESIGN;
D O I
10.1109/EMBC40787.2023.10340382
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a combined study of the mechanical properties of 3D printed scaffolds made by nanocomposite materials based on polycaprolactone (PCL). The geometry and dimensions of the three different systems is the same. The porosity is 50% for all systems. Distributions of von-Mises strains and stresses, and total deformations were obtained through Finite Element Analysis (FEA) for a maximum amount of force applied, in a compressive numerical experiment. Also compressive experiments were performed for both raw and 3D nanoconposite scaffolds.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Engineering 3D Printed Biomimetic Osteochondral Scaffolds
    Kim, Y.
    Alimperti, S.
    TISSUE ENGINEERING PART A, 2023, 29 (9-10)
  • [32] Personalized 3D printed scaffolds: The ethical aspects
    van Daal, Manon
    de Kanter, Anne-Floor J.
    Bredenoord, Annelien L.
    de Graeff, Nienke
    NEW BIOTECHNOLOGY, 2023, 78 : 116 - 122
  • [33] Simulated tissue growth for 3D printed scaffolds
    Egan, Paul F.
    Shea, Kristina A.
    Ferguson, Stephen J.
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2018, 17 (05) : 1481 - 1495
  • [34] 3D printed foamed scaffolds for tissue engineering
    Esposito, Claudio
    Mazio, Claudia
    Cesarelli, Giuseppe
    Tammaro, Daniele
    Netti, Paolo Antonio
    Maffettone, Pier Luca
    TISSUE ENGINEERING PART A, 2023, 29 (13-14)
  • [35] Improved resolution of 3D printed scaffolds by shrinking
    Chia, Helena N.
    Wu, Benjamin M.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2015, 103 (07) : 1415 - 1423
  • [36] Computational and experimental investigation of bio-inspired 3D printed prototypes
    Lozano, Christine M.
    Riveros, Guillermo A.
    Patel, Reena R.
    Wedgeworth, Dane N.
    McClelland, Zackery B.
    Goss, Robert C.
    Perkins, Edward
    BIOINSPIRATION, BIOMIMETICS, AND BIOREPLICATION X, 2020, 11374
  • [37] Engineering 3D Printed Scaffolds with Tunable Hydroxyapatite
    Kim, Yoontae
    Lee, Eun-Jin
    Kotula, Anthony P.
    Takagi, Shozo
    Chow, Laurence
    Alimperti, Stella
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2022, 13 (02)
  • [38] Personalized 3D printed bone scaffolds: A review
    Mirkhalaf, Mohammad
    Men, Yinghui
    Wang, Rui
    No, Young
    Zreiqat, Hala
    ACTA BIOMATERIALIA, 2023, 156 : 110 - 124
  • [39] Temperature and pH responsive 3D printed scaffolds
    Dutta, Sujan
    Cohn, Daniel
    JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (48) : 9514 - 9521
  • [40] Simulated tissue growth for 3D printed scaffolds
    Paul F. Egan
    Kristina A. Shea
    Stephen J. Ferguson
    Biomechanics and Modeling in Mechanobiology, 2018, 17 : 1481 - 1495