LARGE GLOBAL SOLUTIONS FOR THE ENERGY-CRITICAL NONLINEAR SCHRODINGER EQUATION

被引:0
作者
Bai, Ruobing [1 ]
Shen, Jia [2 ]
Wu, Yifei [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
energy-critical nonlinear Schro; dinger equation; global well-posedness; scattering; DATA CAUCHY-THEORY; WELL-POSEDNESS; SURE SCATTERING; NLS; DECAY;
D O I
10.1137/22M1495123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider the three-dimensional defocusing energy-critical nonlinear Schr & ouml;dinger equation i partial derivative(t)u + Delta u = |u|(4)u, (t, x) is an element of R x R-3 . Applying the incoming and outgoing decomposition presented in the recent work [M. Beceanu, Q. Deng, A. Soffer, and Y. Wu, Comm. Math. Phys., 382 (2021), pp. 173-237], we prove that for any radial function f with chi <= 1 f is an element of Pi(1) and chi >= 1 f is an element of Pi(0) with 5/6 < s(0 )< 1, there exists an outgoing component f(+) (or incoming component f(-)) of f , such that when the initial data is f(+) , then the corresponding solution is globally well-posed and scatters forward in time; when the initial data is f(-) , then the corresponding solution is globally well-posed and scatters backward in time.
引用
收藏
页码:4193 / 4218
页数:26
相关论文
共 41 条
[1]  
BE A., 2015, Trans. Amer. Math. Soc. Ser. B, V2, P1
[2]  
Beceanu M, 2019, Arxiv, DOI arXiv:1901.07709
[3]   Large global solutions for nonlinear Schrodinger equations I, mass-subcritical cases [J].
Beceanu, Marius ;
Deng, Qingquan ;
Soffer, Avy ;
Wu, Yifei .
ADVANCES IN MATHEMATICS, 2021, 391
[4]   Large Global Solutions for Nonlinear Schrodinger Equations II, Mass-Supercritical, Energy-Subcritical Cases [J].
Beceanu, Marius ;
Deng, Qingquan ;
Soffer, Avy ;
Wu, Yifei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (01) :173-237
[5]   Invariant measures for the 2D-defocusing nonlinear Schrodinger equation [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) :421-445
[6]   PERIODIC NONLINEAR SCHRODINGER-EQUATION AND INVARIANT-MEASURES [J].
BOURGAIN, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (01) :1-26
[7]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[8]   Random data Cauchy theory for supercritical wave equations II: a global existence result [J].
Burq, Nicolas ;
Tzvetkov, Nikolay .
INVENTIONES MATHEMATICAE, 2008, 173 (03) :477-496
[9]   Random data Cauchy theory for supercritical wave equations I: local theory [J].
Burq, Nicolas ;
Tzvetkov, Nikolay .
INVENTIONES MATHEMATICAE, 2008, 173 (03) :449-475
[10]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836