Transformer oil is used to maintain the core and winding of the transformer. The main tasks of transformer oil as an industrial oil are insulation and cooling of a transformer. In the current study, the thermophysical and thermal properties of transformer oil nanofluid with volume percentages of 0.017% and 0.56% have been experimentally investigated which improves the performance of the base fluid due to the high thermal conductivity coefficient of carbon nanotubes compared to transformer oil. Ultrasonic baths and chemically functionalizing techniques were utilized in a two-step process to create nanofluids, which were stabilized by these techniques. In a double-tube carbon steel heat exchanger, the nanofluids were employed, and the thermal characteristics of the base fluid and nanofluids were evaluated. The findings indicated that the effective thermal conductivity improves with increasing temperature and CNT concentration, reaching its maximum value at a temperature of 45 degrees C in a volume fraction of 0.56. Observations showed that the heat transfer coefficient rose with rising Reynolds number and volume percentage, whereas the friction factor reduced when the hot fluid flowed at an intake temperature of 80 degrees C compared to the nanofluid in the outer tube. The flow rates for the nanofluids were calculated to be 0.2, 0.3, 0.4 lit/s, and 0.18 lit/s for the hot fluid, respectively. As a general conclusion, carbon nanotubes have a very high potential to improve the thermal performance of transformer oils, which is a serious challenge.