How to make climate-neutral aviation fly

被引:58
作者
Sacchi, Romain [1 ]
Becattini, Viola [2 ]
Gabrielli, Paolo [2 ]
Cox, Brian [3 ]
Dirnaichner, Alois [4 ]
Bauer, Christian [1 ]
Mazzotti, Marco [2 ]
机构
[1] Paul Scherrer Inst, Lab Energy Syst Anal, Technol Assessment Grp, Villigen, Switzerland
[2] Swiss Fed Inst Technol, Inst Energy & Proc Engn, Zurich, Switzerland
[3] INFRAS, Bern, Switzerland
[4] Potsdam Inst Climate Impact Res, Potsdam, Germany
关键词
LIFE-CYCLE ASSESSMENT; CARBON CAPTURE; EMISSIONS; FUTURE; TECHNOLOGY; SCENARIOS; STORAGE; IMPACT;
D O I
10.1038/s41467-023-39749-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Europe's aviation must reduce more than just flight CO2 emissions to achieve net-zero. Synthetic fuels and carbon capture and storage could help but decreasing air traffic is crucial due to non-CO2 climate impacts and resource constraints. The European aviation sector must substantially reduce climate impacts to reach net-zero goals. This reduction, however, must not be limited to flight CO2 emissions since such a narrow focus leaves up to 80% of climate impacts unaccounted for. Based on rigorous life-cycle assessment and a time-dependent quantification of non-CO2 climate impacts, here we show that, from a technological standpoint, using electricity-based synthetic jet fuels and compensating climate impacts via direct air carbon capture and storage (DACCS) can enable climate-neutral aviation. However, with a continuous increase in air traffic, synthetic jet fuel produced with electricity from renewables would exert excessive pressure on economic and natural resources. Alternatively, compensating climate impacts of fossil jet fuel via DACCS would require massive CO2 storage volumes and prolong dependence on fossil fuels. Here, we demonstrate that a European climate-neutral aviation will fly if air traffic is reduced to limit the scale of the climate impacts to mitigate.
引用
收藏
页数:17
相关论文
共 105 条
[91]   The contribution of carbon dioxide emissions from the aviation sector to future climate change [J].
Terrenoire, E. ;
Hauglustaine, D. A. ;
Gasser, T. ;
Penanhoat, O. .
ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (08)
[92]  
U.S. Department of Energy, 2009, HYDROGEN FUEL CELLS
[93]   Potential and risks of hydrogen-based e-fuels in climate change mitigation [J].
Ueckerdt, Falko ;
Bauer, Christian ;
Dirnaichner, Alois ;
Everall, Jordan ;
Sacchi, Romain ;
Luderer, Gunnar .
NATURE CLIMATE CHANGE, 2021, 11 (05) :384-+
[94]   Energy and Climate Impacts of Producing Synthetic Hydrocarbon Fuels from CO2 [J].
van der Giesen, Coen ;
Kleijn, Rene ;
Kramer, Gert Jan .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (12) :7111-7121
[95]   Cleaner burning aviation fuels can reduce contrail cloudiness [J].
Voigt, Christiane ;
Kleine, Jonas ;
Sauer, Daniel ;
Moore, Richard H. ;
Braeuer, Tiziana ;
Le Clercq, Patrick ;
Kaufmann, Stefan ;
Scheibe, Monika ;
Jurkat-Witschas, Tina ;
Aigner, Manfred ;
Bauder, Uwe ;
Boose, Yvonne ;
Borrmann, Stephan ;
Crosbie, Ewan ;
Diskin, Glenn S. ;
DiGangi, Joshua ;
Hahn, Valerian ;
Heckl, Christopher ;
Huber, Felix ;
Nowak, John B. ;
Rapp, Markus ;
Rauch, Bastian ;
Robinson, Claire ;
Schripp, Tobias ;
Shook, Michael ;
Winstead, Edward ;
Ziemba, Luke ;
Schlager, Hans ;
Anderson, Bruce E. .
COMMUNICATIONS EARTH & ENVIRONMENT, 2021, 2 (01)
[96]   Life cycle assessment of carbon capture and storage in power generation and industry in Europe [J].
Volkart, Kathrin ;
Bauer, Christian ;
Boulet, Celine .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 16 :91-106
[97]   Future demand for electricity generation materials under different climate mitigation scenarios [J].
Wang, Seaver ;
Hausfather, Zeke ;
Davis, Steven ;
Lloyd, Juzel ;
Olson, Erik B. ;
Liebermann, Lauren ;
Nunez-Mujica, Guido D. ;
McBride, Jameson .
JOULE, 2023, 7 (02) :309-332
[98]   Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory [J].
Watson, Andrew J. ;
Schuster, Ute ;
Shutler, Jamie D. ;
Holding, Thomas ;
Ashton, Ian G. C. ;
Landschuetzer, Peter ;
Woolf, David K. ;
Goddijn-Murphy, Lonneke .
NATURE COMMUNICATIONS, 2020, 11 (01)
[99]   The ecoinvent database version 3 (part I): overview and methodology [J].
Wernet, Gregor ;
Bauer, Christian ;
Steubing, Bernhard ;
Reinhard, Jurgen ;
Moreno-Ruiz, Emilia ;
Weidema, Bo .
INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2016, 21 (09) :1218-1230
[100]  
Wolff C, 2020, World Economic Forum Insight Report