Identification of molecular cell type of breast cancer on digital histopathology images using deep learning and multiplexed fluorescence imaging

被引:1
作者
Han, Wenchao [1 ,2 ]
Cheung, Alison M. [1 ]
Ramanathan, Vishwesh [2 ]
Wang, Dan [1 ]
Liu, Kela [1 ]
Yaffe, Martin J. [1 ,2 ]
Martel, Anne L. [1 ,2 ]
机构
[1] Univ Toronto, Sunnybrook Res Inst, Biomarker Imaging Res Lab, Toronto, ON, Canada
[2] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
来源
MEDICAL IMAGING 2023 | 2023年 / 12471卷
关键词
Multiplexing immunofluorescence; cell classification; cell segmentation; H&E to MxIF image registration; breast cancer;
D O I
10.1117/12.2654943
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
ER, PR (estrogen, progesterone receptor), and HER2 (human epidermal growth factor receptor 2) status are assessed using immunohistochemistry and reported in standard clinical workflows as they provide valuable information to help treatment planning. The protein Ki67 has also been suggested as a prognostic biomarker but is not routinely evaluated clinically due to insufficient quality assurance. The routine pathological practice usually relies on small biopsies, such that the reduction in consumption is necessary to save materials for special assays. For this purpose, we developed and validated an automatic system for segmenting and identifying the (ER, PR, HER2, Ki67) positive cells from haematoxylin and eosin (H&E) stained tissue sections using multiplexed immunofluorescence (MxIF) images at cellular level as a reference standard. In this study, we used 100 tissue-microarray cores sampled from 56 cases of invasive breast cancer. For ER, we extracted cell nucleus images (HoverNet) from the H&E images and assigned each cell nucleus as ER positive vs. negative based on the corresponding MxIF signals (whole cell segmentation with DeepCSeg) upon H&E to MxIF image registration. We trained a Res-Net 18 and validated the model on a separate test-set for classifying the cells as positive vs. negative for ER, and performed the same experiment for the other three markers. We obtained area-under-the-receiver-operating-characteristic-curves (AUCs) of 0.82 (ER), 0.85 (PR), 0.75 (HER2), 0.82 (Ki67) respectively. Our study demonstrates the feasibility of using machine learning to identify molecular status at cellular level directly from the H&E slides.
引用
收藏
页数:6
相关论文
共 15 条
[1]  
Anand Deepak, 2020, J Pathol Inform, V11, P19, DOI 10.4103/jpi.jpi_10_20
[2]   Quantitative single-cell analysis of immunofluorescence protein multiplex images illustrates biomarker spatial heterogeneity within breast cancer subtypes [J].
Cheung, Alison Min-Yan ;
Wang, Dan ;
Liu, Kela ;
Hope, Tyna ;
Murray, Mayan ;
Ginty, Fiona ;
Nofech-Mozes, Sharon ;
Martel, Anne Louise ;
Yaffe, Martin Joel .
BREAST CANCER RESEARCH, 2021, 23 (01)
[3]   Learning to segment images with classification labels [J].
Ciga, Ozan ;
Martel, Anne L. .
MEDICAL IMAGE ANALYSIS, 2021, 68
[4]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[5]   Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype [J].
Couture, Heather D. ;
Williams, Lindsay A. ;
Geradts, Joseph ;
Nyante, Sarah J. ;
Butler, Ebonee N. ;
Marron, J. S. ;
Perou, Charles M. ;
Troester, Melissa A. ;
Niethammer, Marc .
NPJ BREAST CANCER, 2018, 4
[6]   Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue [J].
Gerdes, Michael J. ;
Sevinsky, Christopher J. ;
Sood, Anup ;
Adak, Sudeshna ;
Bello, Musodiq O. ;
Bordwell, Alexander ;
Can, Ali ;
Corwin, Alex ;
Dinn, Sean ;
Filkins, Robert J. ;
Hollman, Denise ;
Kamath, Vidya ;
Kaanumalle, Sireesha ;
Kenny, Kevin ;
Larsen, Melinda ;
Lazare, Michael ;
Li, Qing ;
Lowes, Christina ;
McCulloch, Colin C. ;
McDonough, Elizabeth ;
Montalto, Michael C. ;
Pang, Zhengyu ;
Rittscher, Jens ;
Santamaria-Pang, Alberto ;
Sarachan, Brion D. ;
Seel, Maximilian L. ;
Seppo, Antti ;
Shaikh, Kashan ;
Sui, Yunxia ;
Zhang, Jingyu ;
Ginty, Fiona .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (29) :11982-11987
[7]   Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images [J].
Graham, Simon ;
Quoc Dang Vu ;
Raza, Shan E. Ahmed ;
Azam, Ayesha ;
Tsang, Yee Wah ;
Kwak, Jin Tae ;
Rajpoot, Nasir .
MEDICAL IMAGE ANALYSIS, 2019, 58
[8]  
Hamilton WL, 2017, ADV NEUR IN, V30
[9]   Cell segmentation for immunofluorescence multiplexed images using two-stage domain adaptation and weakly labeled data for pre-training [J].
Han, Wenchao ;
Cheung, Alison M. ;
Yaffe, Martin J. ;
Martel, Anne L. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[10]   Predict Ki-67 Positive Cells in H&E-Stained Images Using Deep Learning Independently From IHC-Stained Images [J].
Liu, Yiqing ;
Li, Xi ;
Zheng, Aiping ;
Zhu, Xihan ;
Liu, Shuting ;
Hu, Mengying ;
Luo, Qianjiang ;
Liao, Huina ;
Liu, Mubiao ;
He, Yonghong ;
Chen, Yupeng .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2020, 7