Efficient few-body calculations in finite volume

被引:2
|
作者
Konig, S. [1 ]
机构
[1] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
来源
13TH INTERNATIONAL SPRING SEMINAR ON NUCLEAR PHYSICS PERSPECTIVES AND CHALLENGES IN NUCLEAR STRUCTURE AFTER 70 YEARS OF SHELL MODEL, ISS 2022 | 2023年 / 2453卷
基金
美国国家科学基金会;
关键词
QUANTUM-FIELD THEORIES; ENERGY-SPECTRUM; DEPENDENCE; STATES;
D O I
10.1088/1742-6596/2453/1/012025
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Simulating quantum systems in a finite volume is a powerful theoretical tool to extract information about them. Real-world properties of the system are encoded in how its discrete energy levels change with the size of the volume. This approach is relevant not only for nuclear physics, where lattice methods for few- and many-nucleon states complement phenomenological shell-model descriptions and ab initio calculations of atomic nuclei based on harmonic oscillator expansions, but also for other fields such as simulations of cold atomic systems. This contribution presents recent progress concerning finite-volume simulations of fewbody systems. In particular, it discusses details regarding the efficient numerical implementation of separable interactions and it presents eigenvector continuation as a method for performing robust and efficient volume extrapolations.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Spectrum of light nuclei in a finite volume
    Yaron, R.
    Bazak, B.
    Schafer, M.
    Barnea, N.
    PHYSICAL REVIEW D, 2022, 106 (01)
  • [42] Finite volume form factors in integrable theories
    Bajnok, Zoltan
    Linardopoulos, Georgios
    Szecsenyi, Istvan M.
    Vona, Istvan
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (02)
  • [43] Few-nucleon matrix elements in pionless effective field theory in a finite volume
    Detmold, W.
    Shanahan, P. E.
    PHYSICAL REVIEW D, 2021, 103 (07)
  • [44] Non-relativistic bound states in a finite volume
    Koenig, Sebastian
    Lee, Dean
    Hammer, H. -W.
    ANNALS OF PHYSICS, 2012, 327 (06) : 1450 - 1471
  • [45] Finite volume corrections to the binding energy of the X(3872)
    Jansen, M.
    Hammer, H. -W.
    Jia, Yu
    PHYSICAL REVIEW D, 2015, 92 (11):
  • [46] Topological phases for bound states moving in a finite volume
    Bour, Shahin
    Koenig, Sebastian
    Lee, Dean
    Hammer, H. -W.
    Meiner, Ulf-G.
    PHYSICAL REVIEW D, 2011, 84 (09):
  • [47] Nucleon resonance structure in the finite volume of lattice QCD
    Wu, Jia-Jun
    Kamano, H.
    Lee, T. -S. H.
    Leinweber, D. B.
    Thomas, A. W.
    PHYSICAL REVIEW D, 2017, 95 (11)
  • [48] Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results
    Marchukov, Oleksandr V.
    Eriksen, Emil H.
    Midtgaard, Jonatan M.
    Kalaee, Alex A. S.
    Fedorov, Dmitri V.
    Jensen, Aksel S.
    Zinner, Nikolaj T.
    EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (02):
  • [49] Hamiltonian effective field theory in elongated or moving finite volume
    Li, Yan
    Wu, Jia-Jun
    Leinweber, Derek B.
    Thomas, Anthony W.
    PHYSICAL REVIEW D, 2021, 103 (09)
  • [50] Quantum electrodynamics in finite volume and nonrelativistic effective field theories
    Fodor, Z.
    Hoelbling, C.
    Katz, S. D.
    Lellouch, L.
    Portelli, A.
    Szabo, K. K.
    Toth, B. C.
    PHYSICS LETTERS B, 2016, 755 : 245 - 248