A robust large-scale surface water mapping framework with high spatiotemporal resolution based on the fusion of multi-source remote sensing data

被引:15
|
作者
Li, Junjie [1 ]
Li, Linyi [1 ]
Song, Yanjiao [1 ]
Chen, Jiaming [1 ]
Wang, Zhe [1 ]
Bao, Yi [1 ]
Zhang, Wen [1 ]
Meng, Lingkui [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
关键词
Surface water; Google Earth Engine; Remote sensing; Sentinel-1; Sentinel-2; IMAGERY;
D O I
10.1016/j.jag.2023.103288
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Large-scale and dynamic surface water mapping is crucial for understanding the impact of global climate change and human activities on the distribution of surface water resources. Remote sensing imagery has become the primary data source for surface water mapping due to its high spatiotemporal resolution and wide coverage. However, the reliability of current water products during flood seasons is limited due to the influence of clouds on optical remote sensing images. Moreover, annual and seasonal surface water mapping cannot capture intra-month variations of water bodies. To address these challenges, we proposed a high spatiotemporal surface water mapping framework on Google Earth Engine that combines multi-source remote sensing data. Our framework can generate 10 m spatial resolution surface water maps at a 15-day time step. We classified water bodies using Sentinel-2 images and a classification tree algorithm, and then used Sentinel-1 data to compensate for cloudy and missing data areas in Sentinel-2 images, resulting in seamless cloud-unaffected surface water maps. We evaluated the effectiveness of our proposed framework in six floodplains around the world, and experimental results demonstrate that the water maps generated by our framework outperform existing public datasets and our framework has great potential for hydrological applications. Our proposed framework can capture the details of surface water dynamics with higher spatial and temporal resolution and is free from cloud influence, which is necessary for water resources management, flood monitoring, and disaster response.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Large-Scale River Mapping Using Contrastive Learning and Multi-Source Satellite Imagery
    Wei, Zhihao
    Jia, Kebin
    Liu, Pengyu
    Jia, Xiaowei
    Xie, Yiqun
    Jiang, Zhe
    REMOTE SENSING, 2021, 13 (15)
  • [42] Permafrost Presence/Absence Mapping of the Qinghai-Tibet Plateau Based on Multi-Source Remote Sensing Data
    Shi, Yaya
    Niu, Fujun
    Yang, Chengsong
    Che, Tao
    Lin, Zhanju
    Luo, Jing
    REMOTE SENSING, 2018, 10 (02):
  • [43] Data fusion of multi-source remote sensing based on level set method and application to urban road extraction
    Key Laboratory for Wave Scattering and Remote Sensing Information, Fudan University, Shanghai 200433, China
    Dianzi Yu Xinxi Xuebao, 2007, 6 (1464-1470):
  • [44] High Spatiotemporal Resolution River Networks Mapping on Catchment Scale Using Satellite Remote Sensing Imagery and DEM Data
    Li, Peng
    Zhang, Yun
    Liang, Cunren
    Wang, Houjie
    Li, Zhenhong
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (06)
  • [45] Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine
    Li, Qingyu
    Qiu, Chunping
    Ma, Lei
    Schmitt, Michael
    Zhu, Xiao Xiang
    REMOTE SENSING, 2020, 12 (04)
  • [46] Extraction of grassland irrigation information in arid regions based on multi-source remote sensing data
    Fu, Di
    Jin, Xin
    Jin, Yanxiang
    Mao, Xufeng
    AGRICULTURAL WATER MANAGEMENT, 2024, 302
  • [47] A model for the fusion of multi-source data to generate high temporal and spatial resolution VI data
    Yang J.
    Wu Y.
    Wei Y.
    Wang B.
    Ru C.
    Ma Y.
    Zhang Y.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (05): : 935 - 943
  • [48] Super ensemble based streamflow simulation using multi-source remote sensing and ground gauged rainfall data fusion
    Wegayehu, Eyob Betru
    Muluneh, Fiseha Behulu
    HELIYON, 2023, 9 (07)
  • [49] Surface Environmental Evolution Monitoring in Coal Mining Subsidence Area Based on Multi-Source Remote Sensing Data
    Shang, Hui
    Zhan, Hui-Zhu
    Ni, Wan-Kui
    Liu, Yang
    Gan, Zhi-Hui
    Liu, Si-Hang
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [50] Large-scale and fine-grained mapping of heathland habitats using open-source remote sensing data
    Hubert-Moy, Laurence
    Rozo, Clemence
    Perrin, Gwenhael
    Bioret, Frederic
    Rapinel, Sebastien
    REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2022, 8 (04) : 448 - 463