A robust large-scale surface water mapping framework with high spatiotemporal resolution based on the fusion of multi-source remote sensing data

被引:15
|
作者
Li, Junjie [1 ]
Li, Linyi [1 ]
Song, Yanjiao [1 ]
Chen, Jiaming [1 ]
Wang, Zhe [1 ]
Bao, Yi [1 ]
Zhang, Wen [1 ]
Meng, Lingkui [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
关键词
Surface water; Google Earth Engine; Remote sensing; Sentinel-1; Sentinel-2; IMAGERY;
D O I
10.1016/j.jag.2023.103288
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Large-scale and dynamic surface water mapping is crucial for understanding the impact of global climate change and human activities on the distribution of surface water resources. Remote sensing imagery has become the primary data source for surface water mapping due to its high spatiotemporal resolution and wide coverage. However, the reliability of current water products during flood seasons is limited due to the influence of clouds on optical remote sensing images. Moreover, annual and seasonal surface water mapping cannot capture intra-month variations of water bodies. To address these challenges, we proposed a high spatiotemporal surface water mapping framework on Google Earth Engine that combines multi-source remote sensing data. Our framework can generate 10 m spatial resolution surface water maps at a 15-day time step. We classified water bodies using Sentinel-2 images and a classification tree algorithm, and then used Sentinel-1 data to compensate for cloudy and missing data areas in Sentinel-2 images, resulting in seamless cloud-unaffected surface water maps. We evaluated the effectiveness of our proposed framework in six floodplains around the world, and experimental results demonstrate that the water maps generated by our framework outperform existing public datasets and our framework has great potential for hydrological applications. Our proposed framework can capture the details of surface water dynamics with higher spatial and temporal resolution and is free from cloud influence, which is necessary for water resources management, flood monitoring, and disaster response.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Remote Sensing Monitoring of Grasslands Based on Adaptive Feature Fusion with Multi-Source Data
    Wang, Weitao
    Ma, Qin
    Huang, Jianxi
    Feng, Quanlong
    Zhao, Yuanyuan
    Guo, Hao
    Chen, Boan
    Li, Chenxi
    Zhang, Yuxin
    REMOTE SENSING, 2022, 14 (03)
  • [32] Crop classification based on multi-source remote sensing data fusion and LSTM algorithm
    Xie Y.
    Zhang Y.
    Xun L.
    Chai X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (15): : 129 - 137
  • [33] Information fusion for large-scale multi-source data based on the Dempster-Shafer evidence theory
    Zhang, Qinli
    Zhang, Pengfei
    Li, Tianrui
    INFORMATION FUSION, 2025, 115
  • [34] MAPPING AERODYNAMIC ROUGHNESS LENGTH WITH MULTI-SOURCE REMOTE SENSING DATA
    Hu, Deyong
    Cao, Shisong
    Chen, Shanshan
    Feng, Nan
    2016 4rth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 2016,
  • [35] Integrating multi-source remote sensing data for soil mapping in Victoria
    Abuzar, M
    Ryan, S
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 2495 - 2497
  • [36] A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion
    Li Y.
    Wang L.
    Liu X.
    Chu Q.
    Yang X.
    IEEE Journal on Miniaturization for Air and Space Systems, 2022, 3 (01): : 9 - 18
  • [37] High-resolution mapping of forest structure and carbon stock using multi-source remote sensing data in Japan
    Li, Hantao
    Hiroshima, Takuya
    Li, Xiaoxuan
    Hayashi, Masato
    Kato, Tomomichi
    REMOTE SENSING OF ENVIRONMENT, 2024, 312
  • [38] High-Resolution Mapping of Maize in Mountainous Terrain Using Machine Learning and Multi-Source Remote Sensing Data
    Liu, Luying
    Yang, Jingyi
    Yin, Fang
    He, Linsen
    LAND, 2025, 14 (02)
  • [39] Research on cropping intensity mapping of the Huai River Basin (China) based on multi-source remote sensing data fusion
    Wang, Yihang
    Fan, Lin
    Tao, Ranting
    Zhang, Letao
    Zhao, Wei
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (09) : 12661 - 12679
  • [40] Research on cropping intensity mapping of the Huai River Basin (China) based on multi-source remote sensing data fusion
    Yihang Wang
    Lin Fan
    Ranting Tao
    Letao Zhang
    Wei Zhao
    Environmental Science and Pollution Research, 2022, 29 : 12661 - 12679