A robust large-scale surface water mapping framework with high spatiotemporal resolution based on the fusion of multi-source remote sensing data

被引:15
|
作者
Li, Junjie [1 ]
Li, Linyi [1 ]
Song, Yanjiao [1 ]
Chen, Jiaming [1 ]
Wang, Zhe [1 ]
Bao, Yi [1 ]
Zhang, Wen [1 ]
Meng, Lingkui [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
关键词
Surface water; Google Earth Engine; Remote sensing; Sentinel-1; Sentinel-2; IMAGERY;
D O I
10.1016/j.jag.2023.103288
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Large-scale and dynamic surface water mapping is crucial for understanding the impact of global climate change and human activities on the distribution of surface water resources. Remote sensing imagery has become the primary data source for surface water mapping due to its high spatiotemporal resolution and wide coverage. However, the reliability of current water products during flood seasons is limited due to the influence of clouds on optical remote sensing images. Moreover, annual and seasonal surface water mapping cannot capture intra-month variations of water bodies. To address these challenges, we proposed a high spatiotemporal surface water mapping framework on Google Earth Engine that combines multi-source remote sensing data. Our framework can generate 10 m spatial resolution surface water maps at a 15-day time step. We classified water bodies using Sentinel-2 images and a classification tree algorithm, and then used Sentinel-1 data to compensate for cloudy and missing data areas in Sentinel-2 images, resulting in seamless cloud-unaffected surface water maps. We evaluated the effectiveness of our proposed framework in six floodplains around the world, and experimental results demonstrate that the water maps generated by our framework outperform existing public datasets and our framework has great potential for hydrological applications. Our proposed framework can capture the details of surface water dynamics with higher spatial and temporal resolution and is free from cloud influence, which is necessary for water resources management, flood monitoring, and disaster response.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Estimation of large-scale impervious surface percentage by fusion of multi-source time series remote sensing data
    Li F.
    Li E.
    Alim S.
    Zhang L.
    Liu W.
    Hu J.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (10): : 1243 - 1254
  • [2] Large-Scale Rice Mapping Based on Google Earth Engine and Multi-Source Remote Sensing Images
    Fan, Xiang
    Wang, Zhipan
    Zhang, Hua
    Liu, Huan
    Jiang, Zhuoyi
    Liu, Xianghe
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2023, 51 (01) : 93 - 102
  • [3] Large-Scale Rice Mapping Based on Google Earth Engine and Multi-Source Remote Sensing Images
    Xiang Fan
    Zhipan Wang
    Hua Zhang
    Huan Liu
    Zhuoyi Jiang
    Xianghe Liu
    Journal of the Indian Society of Remote Sensing, 2023, 51 : 93 - 102
  • [4] High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images
    Yang, Lingbo
    Wang, Limin
    Abubakar, Ghali Abdullahi
    Huang, Jingfeng
    REMOTE SENSING, 2021, 13 (06)
  • [5] Large-Scale Crop Mapping Based on Multisource Remote Sensing Intelligent Interpretation: A Spatiotemporal Data Cubes Approach
    Sun, Jialin
    Yao, Xiaochuang
    Yan, Shuai
    Xiong, Quan
    Li, Guoqing
    Huang, Jianxi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 13077 - 13088
  • [6] Research on cropping intensity mapping of the Huai River Basin (China) based on multi-source remote sensing data fusion
    Wang, Yihang
    Fan, Lin
    Tao, Ranting
    Zhang, Letao
    Zhao, Wei
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (09) : 12661 - 12679
  • [7] Rapid Large-Scale Wetland Inventory Update Using Multi-Source Remote Sensing
    Igwe, Victor
    Salehi, Bahram
    Mahdianpari, Masoud
    REMOTE SENSING, 2023, 15 (20)
  • [8] A surface water resource asset accounting method based on multi-source remote sensing data
    Kang, Hui
    Dou, Wenzhang
    Chen, Li
    Han, Lingyi
    Sui, Xinxin
    Ding, Ziyue
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2024, 12
  • [9] Extraction of marsh wetland in Heilongjiang Basin based on GEE and multi-source remote sensing data
    Ning X.
    Chang W.
    Wang H.
    Zhang H.
    Zhu Q.
    National Remote Sensing Bulletin, 2022, 26 (02): : 386 - 396
  • [10] An Operational Atmospheric Correction Framework for Multi-Source Medium-High-Resolution Remote Sensing Data of China
    Zhang, Hao
    Yan, Dongchuan
    Zhang, Bing
    Fu, Zhengwen
    Li, Baipeng
    Zhang, Shuning
    REMOTE SENSING, 2022, 14 (21)