Evaluating proteome allocation of Saccharomyces cerevisiae phenotypes with resource balance analysis

被引:8
作者
Dinh, Hoang, V [1 ,2 ]
Maranas, Costas D. [1 ,2 ,3 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[2] Penn State Univ, DOE Ctr Adv Bioenergy & Bioprod Innovat, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
关键词
Resource balance analysis; Genome-scale model; Proteome allocation; Saccharomyces cerevisiae; Overflow metabolism; AMINO-ACID BIOSYNTHESIS; YEAST; GENOME; GLUCOSE; (S)-RETICULINE; FERMENTATION; METABOLISM; RIBOSOMES; PROTEINS; SEQUENCE;
D O I
10.1016/j.ymben.2023.04.009
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Saccharomyces cerevisiae is an important model organism and a workhorse in bioproduction. Here, we reconstructed a compact and tractable genome-scale resource balance analysis (RBA) model (i.e., named scRBA) to analyze metabolic fluxes and proteome allocation in a computationally efficient manner. Resource capacity models such as scRBA provide the quantitative means to identify bottlenecks in biosynthetic pathways due to enzyme, compartment size, and/or ribosome availability limitations. ATP maintenance rate and in vivo apparent turnover numbers (kapp) were regressed from metabolic flux and protein concentration data to capture observed physiological growth yield and proteome efficiency and allocation, respectively. Estimated parameter values were found to vary with oxygen and nutrient availability. Overall, this work (i) provides condition-specific model parameters to recapitulate phenotypes corresponding to different extracellular environments, (ii) alludes to the enhancing effect of substrate channeling and post-translational activation on in vivo enzyme efficiency in glycolysis and electron transport chain, and (iii) reveals that the Crabtree effect is underpinned by specific limitations in mitochondrial proteome capacity and secondarily ribosome availability rather than overall proteome capacity.
引用
收藏
页码:242 / 255
页数:14
相关论文
共 124 条
[1]   A glycolytic metabolon in Saccharomyces cerevisiae is stabilized by F-actin [J].
Araiza-Olivera, Daniela ;
Chiquete-Felix, Natalia ;
Rosas-Lemus, Monica ;
Sampedro, Jose G. ;
Pena, Antonio ;
Mujica, Adela ;
Uribe-Carvajal, Salvador .
FEBS JOURNAL, 2013, 280 (16) :3887-3905
[2]   Engineering of Saccharomyces cerevisiae for the accumulation of high amounts of triacylglycerol [J].
Arhar, Simon ;
Gogg-Fassolter, Gabriela ;
Ogrizovic, Mojca ;
Pacnik, Klavdija ;
Schwaiger, Katharina ;
Zganjar, Mia ;
Petrovic, Uros ;
Natter, Klaus .
MICROBIAL CELL FACTORIES, 2021, 20 (01)
[3]  
Aung Hnin W, 2013, Ind Biotechnol (New Rochelle N Y), V9, P215
[4]   Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds-Present and Future Strain Construction Strategies [J].
Averesch, Nils J. H. ;
Kroemer, Jens O. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2018, 6
[5]   Enhanced production of para-hydroxybenzoic acid by genetically engineered Saccharomyces cerevisiae [J].
Averesch, Nils J. H. ;
Prima, Alex ;
Kroemer, Jens O. .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2017, 40 (08) :1283-1289
[6]   Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae [J].
Averesch, Nils J. H. ;
Winter, Gal ;
Kromer, Jens O. .
MICROBIAL CELL FACTORIES, 2016, 15
[7]   Overflow metabolism in Escherichia coli results from efficient proteome allocation [J].
Basan, Markus ;
Hui, Sheng ;
Okano, Hiroyuki ;
Zhang, Zhongge ;
Shen, Yang ;
Williamson, James R. ;
Hwa, Terence .
NATURE, 2015, 528 (7580) :99-+
[8]   Automatic construction of metabolic models with enzyme constraints [J].
Bekiaris, Pavlos Stephanos ;
Klamt, Steffen .
BMC BIOINFORMATICS, 2020, 21 (01)
[9]   Proteome reallocation from amino acid biosynthesis to ribosomes enables yeast to grow faster in rich media [J].
Bjorkeroth, Johan ;
Campbell, Kate ;
Malina, Carl ;
Yu, Rosemary ;
Di Bartolomeo, Francesca ;
Nielsen, Jens .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (35) :21804-21812
[10]   Quantitative Physiology of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates [J].
Boender, Leonie G. M. ;
de Hulster, Erik A. F. ;
van Maris, Antonius J. A. ;
Daran-Lapujade, Pascale A. S. ;
Pronk, Jack T. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (17) :5607-5614