Liquid-Liquid Phase Separation of Two Non-Dissolving Liquids-A Mini Review

被引:8
作者
Dimitrijevic, Dragana [1 ]
Boesenhofer, Markus [1 ,2 ]
Harasek, Michael [1 ]
机构
[1] TU Wien, Inst Chem Environm & Biosci Engn, A-1060 Vienna, Austria
[2] MET GmbH, Area Simulat & Anal K1 MET 4, A-4020 Linz, Austria
基金
欧盟地平线“2020”;
关键词
liquid-liquid separation; immiscible liquids; liquid-liquid separation equipment; gravity decanters; centrifugation; ultrafiltration; electrostatic coalescers; separated phase recycling; MICROWAVE-ASSISTED EXTRACTION; DROP SIZE DISTRIBUTIONS; SOLVENT-EXTRACTION; IONIC LIQUIDS; ACTIVITY-COEFFICIENTS; OIL/WATER SEPARATION; MEMBRANE TECHNOLOGY; SURFACE-TENSION; BINODAL CURVES; CONTACT-ANGLE;
D O I
10.3390/pr11041145
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The separation of immiscible liquids is critical in many industrial processes, such as water treatment, different extraction processes, the petroleum industry, food production, and medicine. This work provides an overview of present research on the separation of liquid mixtures. A brief summary of the thermodynamic basis is provided, covering phase equilibrium, phase diagrams, and thermodynamic properties of phases. Additionally, the fundamentals of dispersion, necessary for discussing liquid-liquid separation, are presented. Subsequently, different liquid-liquid separation methods are discussed, highlighting their advantages and limitations. These methods include decanters, coalescers, centrifugal separators, membranes and electro-coalescers for liquid-liquid separation. Phase properties, dispersion formation, and time and space constraints specify the most efficient separation method. Phase recycling is also briefly discussed as a method to reduce the environmental impact of liquid-liquid extraction with subsequent phase separation. In summary, liquid-liquid separation methods are compared and future perspectives of liquid-liquid separation are discussed.
引用
收藏
页数:23
相关论文
共 170 条
  • [11] Modified sessile drop method for assessing initial soil-water contact angle of sandy soil
    Bachmann, J
    Horton, R
    Van Der Ploeg, RR
    Woche, S
    [J]. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2000, 64 (02) : 564 - 567
  • [12] Modelling solid-liquid separation and particle size classification in decanter centrifuges
    Bai, Changzhi
    Park, Hangil
    Wang, Liguang
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 263
  • [13] Purifying cellulose from major waste streams using ionic liquids and deep eutectic solvents
    Barbara, Pedro Verdia
    Rafat, Aida Abouelela
    Hallett, Jason P.
    Brandt-Talbot, Agnieszka
    [J]. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2023, 41
  • [14] Measurement of surface and interfacial tension using pendant drop tensiometry
    Berry, Joseph D.
    Neeson, Michael J.
    Dagastine, Raymond R.
    Chan, Derek Y. C.
    Tabor, Rico F.
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 454 : 226 - 237
  • [15] Bikerman J.J., 1970, Physical Surfaces
  • [16] Bradley D., 1965, The Hydrocyclone
  • [17] Bretney E., 1891, US Patent, Patent No. [453,105, 453105]
  • [18] Selective extraction of female hormones using aqueous two-phase system composed of double protic ionic liquid plus acetonitrile
    Buarque, Filipe S.
    Barreto, Victor S.
    Soares, Cleide M. F.
    Souza, Ranyere L.
    Pereira, Matheus M.
    Lima, Alvaro S.
    [J]. FLUID PHASE EQUILIBRIA, 2020, 508 (508)
  • [19] LE CHATELIER PRINCIPLE, TEMPERATURE EFFECTS, AND ENTROPY
    CAMPBELL, JA
    [J]. JOURNAL OF CHEMICAL EDUCATION, 1985, 62 (03) : 231 - 232
  • [20] Thin liquid films: Where hydrodynamics, capillarity, surface stresses and intermolecular forces meet
    Chatzigiannakis, Emmanouil
    Jaensson, Nick
    Vermant, Jan
    [J]. CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2021, 53