Stellar classification with convolutional neural networks and photometric images: a new catalogue of 50 million SDSS stars without spectra

被引:12
作者
Shi, Jing-Hang [1 ]
Qiu, Bo [1 ]
Luo, A-Li [2 ,3 ]
He, Zhen-Dong [1 ]
Kong, Xiao [2 ]
Jiang, Xia [1 ]
机构
[1] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
[2] Natl Astron Observ, CAS Key Lab Opt Astron, Beijing 100101, Peoples R China
[3] Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
methods: data analysis; techniques: image processing; techniques: photometric; REDSHIFT ESTIMATION;
D O I
10.1093/mnras/stad255
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Stellar classification is a central topic in astronomical research that relies mostly on the use of spectra. However, with the development of large sky surveys, spectra are becoming increasingly scarce compared to photometric images. Numerous observed stars lack spectral types. In Sloan Digital Sky Survey (SDSS), there are more than hundreds of millions of such stars. In this paper, we propose a convolutional neural network-based stellar classification network (SCNet) in an attempt to solve the stellar classification task from photometric images alone, distinguishing between seven classes, i.e. O, B, A, F, G, K, and M. A total of 46 245 identified stellar objects were collected from the SDSS as the training samples for our network. Compared to many typical classification networks in deep learning, SCNet achieves the best classification accuracy of 0.861. When we allow an error to be within three neighbouring subtypes for SCNet, the accuracy even reaches 0.907. We apply the final SCNet model to 50 245 638 SDSS stars without corresponding spectra and present a new star classification catalogue, containing 7438 O-type stars, 31 433 B-type stars, 201 189 A-type stars, 910 007 F-type stars, 10 986 055 G-type stars, 18 941 155 K-type stars, and 19 168 361 M-type stars.
引用
收藏
页码:2269 / 2280
页数:12
相关论文
共 37 条
[1]  
Abdurro U., 2022, AJ, V259, P35, DOI DOI 10.3847/1538-4365/AC4414
[2]  
[Anonymous], 2015, ICLR WORKSHOP TRACK
[3]   Estimating Distances from Parallaxes. V. Geometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3 [J].
Bailer-Jones, C. A. L. ;
Rybizki, J. ;
Fouesneau, M. ;
Demleitner, M. ;
Andrae, R. .
ASTRONOMICAL JOURNAL, 2021, 161 (03)
[4]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[5]   Identifying galaxies, quasars, and stars with machine learning: A new catalogue of classifications for 111 million SDSS sources without spectra [J].
Clarke, A. O. ;
Scaife, A. M. M. ;
Greenhalgh, R. ;
Griguta, V .
ASTRONOMY & ASTROPHYSICS, 2020, 639
[6]   Photometric redshift estimation via deep learning Generalized and pre-classification-less, image based, fully probabilistic redshifts [J].
D'Isanto, A. ;
Polsterer, K. L. .
ASTRONOMY & ASTROPHYSICS, 2018, 609
[7]   Rotation-invariant convolutional neural networks for galaxy morphology prediction [J].
Dieleman, Sander ;
Willett, Kyle W. ;
Dambre, Joni .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 450 (02) :1441-1459
[8]   Automated spectral classification using template matching [J].
Duan, Fu-Qing ;
Liu, Rong ;
Guo, Ping ;
Zhou, Ming-Quan ;
Wu, Fu-Chao .
RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2009, 9 (03) :341-348
[9]   Mask galaxy: Morphological segmentation of galaxies [J].
Farias, H. ;
Ortiz, D. ;
Damke, G. ;
Arancibia, M. Jaque ;
Solar, M. .
ASTRONOMY AND COMPUTING, 2020, 33
[10]   LAMOST OBSERVATIONS IN THE KEPLER FIELD: SPECTRAL CLASSIFICATION WITH THE MKCLASS CODE [J].
Gray, R. O. ;
Corbally, C. J. ;
De Cat, P. ;
Fu, J. N. ;
Ren, A. B. ;
Shi, J. R. ;
Luo, A. L. ;
Zhang, H. T. ;
Wu, Y. ;
Cao, Z. ;
Li, G. ;
Zhang, Y. ;
Hou, Y. ;
Wang, Y. .
ASTRONOMICAL JOURNAL, 2016, 151 (01)