Industry classification based on supply chain network information using Graph Neural Networks

被引:24
|
作者
Wu, Desheng [1 ]
Wang, Quanbin [2 ]
Olson, David L. [3 ]
机构
[1] Univ Chinese Acad Sci, Sch Econ & Management, 80,Zhongguancun East Rd, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sino Danish Coll, 80, Zhongguancun East Rd, Beijing 100190, Peoples R China
[3] Univ Nebraska Lincoln, Dept Supply Chain Management & Analyt, Lincoln, NE 68588 USA
基金
中国国家自然科学基金;
关键词
Supply chain network; Industry classification; Graph neural network; RISK-MANAGEMENT; IMPACT;
D O I
10.1016/j.asoc.2022.109849
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The number and trade volume of Chinese firms are increasing year by year. The resulting variety of complex transactions have made risk control and government supervision difficult. China's listed companies have specific classifications, but most non-listed companies do not have comparable classifications, making it difficult to analyze all companies on the same basis. Supply chain networks have proved to contain rich information, which can more completely reflect transaction relationships. This study mines hidden information obtained from the supply chain network to classify participating companies. We construct the supply chain network data set of listed companies, and use the graph neural network (GNN) algorithm to classify these companies. Experiments show that this method is effective and can produce better results than the commonly used machine learning methods. On average the accuracy of industry classification for listed companies is improved by over 2%, and time required is greatly reduced. In addition, we use economic variables derived from supply chain concepts to try to explain the effectiveness and economic significance of GNN, and find that GNN can also be used to classify companies into multiple industries. Our findings provide new insights, as well as a potential method to label a private company's industry using only public text information, which can be used for the study of smart industry classification and mining implicit information from the perspective of supply chain networks.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Supply Chain Financial Fraud Detection Based on Graph Neural Network and Knowledge
    Xie, Wenying
    He, Juan
    Huang, Fuyou
    Ren, Jun
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2024, 31 (06): : 2055 - 2063
  • [2] Transaction Prediction by Using Graph Neural Network and Textual Industry Information
    Minakawa, Naoto
    Izumi, Kiyoshi
    Sakaji, Hiroki
    Sano, Hitomi
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, JSAI-ISAI 2022 WORKSHOP, JURISIN 2022, JSAI 2022, 2023, 13859 : 251 - 266
  • [3] Symbols Detection and Classification using Graph Neural Networks
    Renton, Guillaume
    Balcilar, Muhammet
    Heroux, Pierre
    Gauzere, Benoit
    Honeine, Paul
    Adam, Sebastien
    PATTERN RECOGNITION LETTERS, 2021, 152 : 391 - 397
  • [4] Opinion Leaders for Information Diffusion Using Graph Neural Network in Online Social Networks
    Jain, Lokesh
    Katarya, Rahul
    Sachdeva, Shelly
    ACM TRANSACTIONS ON THE WEB, 2023, 17 (02)
  • [5] Polynomial-based graph convolutional neural networks for graph classification
    Luca Pasa
    Nicolò Navarin
    Alessandro Sperduti
    Machine Learning, 2022, 111 : 1205 - 1237
  • [6] Revisiting Attention-Based Graph Neural Networks for Graph Classification
    Tao, Ye
    Li, Ying
    Wu, Zhonghai
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 442 - 458
  • [7] Bipartite Graph Coarsening for Text Classification Using Graph Neural Networks
    dos Santos, Nicolas Roque
    Minatel, Diego
    Baria Valejo, Alan Demetrius
    Lopes, Alneu de A.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I, 2024, 14469 : 589 - 604
  • [8] Avocado Ripeness Classification Using Graph Neural Network
    Yu, Christian David D.
    Villaverde, Jocelyn F.
    2022 14TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2022), 2022, : 74 - 79
  • [9] Polynomial-based graph convolutional neural networks for graph classification
    Pasa, Luca
    Navarin, Nicolo
    Sperduti, Alessandro
    MACHINE LEARNING, 2022, 111 (04) : 1205 - 1237
  • [10] Heterogeneous graph neural networks for fraud detection and explanation in supply chain finance
    Wu, Bin
    Chao, Kuo-Ming
    Li, Yinsheng
    INFORMATION SYSTEMS, 2024, 121