Robust quasi-randomization-based estimation with ensemble learning for missing data

被引:1
|
作者
Lee, Danhyang [1 ]
Zhang, Li-Chun [2 ,3 ]
Chen, Sixia [4 ]
机构
[1] Univ Alabama, Dept Informat Syst Stat & Management Sci, Tuscaloosa, AL 35487 USA
[2] Univ Southampton, Dept Social Stat & Demog, Southampton, England
[3] Stat Sentralbyra, Oslo, Norway
[4] Univ Oklahoma, Dept Biostat & Epidemiol, Hlth Sci Ctr, Oklahoma City, OK USA
关键词
cell mean model; item nonresponse; missing at random; Rao-Blackwell method; variance estimation; IMPUTATION PROCEDURES; NONRESPONSE; INFERENCE;
D O I
10.1111/sjos.12626
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Missing data analysis requires assumptions about an outcome model or a response probability model to adjust for potential bias due to nonresponse. Doubly robust (DR) estimators are consistent if at least one of the models is correctly specified. Multiply robust (MR) estimators extend DR estimators by allowing for multiple models for both the outcome and/or response probability models and are consistent if at least one of the multiple models is correctly specified. We propose a robust quasi-randomization-based model approach to bring more protection against model misspecification than the existing DR and MR estimators, where any multiple semiparametric, nonparametric or machine learning models can be used for the outcome variable. The proposed estimator achieves unbiasedness by using a subsampling Rao-Blackwell method, given cell-homogenous response, regardless of any working models for the outcome. An unbiased variance estimation formula is proposed, which does not use any replicate jackknife or bootstrap methods. A simulation study shows that our proposed method outperforms the existing multiply robust estimators.
引用
收藏
页码:1263 / 1278
页数:16
相关论文
共 25 条
  • [1] Robust location estimation with missing data
    Sued, Mariela
    Yohai, Victor J.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (01): : 111 - 132
  • [2] Jackknife empirical likelihood method for multiply robust estimation with missing data
    Chen, Sixia
    Haziza, David
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 127 : 258 - 268
  • [3] Robust estimation for moment condition models with data missing not at random
    Li, Wei
    Yang, Shu
    Han, Peisong
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 207 : 246 - 254
  • [4] Multiply robust estimation in nonparametric regression with missing data
    Sun, Yilun
    Wang, Lu
    Han, Peisong
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (01) : 73 - 92
  • [5] Multiply Robust Estimation in Regression Analysis With Missing Data
    Han, Peisong
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (507) : 1159 - 1173
  • [6] Randomization-Based Inference for Clinical Trials with Missing Outcome Data
    Heussen, Nicole
    Hilgers, Ralf-Dieter
    Rosenberger, William F.
    Tan, Xiao
    Uschner, Diane
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2024, 16 (04): : 456 - 467
  • [7] A comparison of multiple imputation and doubly robust estimation for analyses with missing data
    Carpenter, James R.
    Kenward, Michael G.
    Vansteelandt, Stijn
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2006, 169 : 571 - 584
  • [8] Robust estimation under a semiparametric propensity model for nonignorable missing data
    Shetty, Samidha
    Ma, Yanyuan
    Zhao, Jiwei
    ELECTRONIC JOURNAL OF STATISTICS, 2025, 19 (01): : 956 - 981
  • [9] Efficient and doubly robust estimation in covariate-missing data problems
    Zhang, Biao
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2015, 18 (03) : 213 - 250
  • [10] Improved double-robust estimation in missing data and causal inference models
    Rotnitzky, Andrea
    Lei, Quanhong
    Sued, Mariela
    Robins, James M.
    BIOMETRIKA, 2012, 99 (02) : 439 - 456