Global existence and asymptotic behavior for a Timoshenko system with internal damping and logarithmic source terms

被引:3
作者
Cordeiro, Sebastiao Martins Siqueira [1 ]
Pereira, Ducival Carvalho [2 ]
Baldez, Carlos Alessandro da Costa [3 ]
da Cunha, Carlos Alberto Raposo [4 ]
机构
[1] Fed Univ Para, Fac Exact Sci & Technol, BR-68440000 Abaetetuba, PA, Brazil
[2] State Univ Para, Dept Math, BR-66113010 Belem, PA, Brazil
[3] Fed Univ Para, Fac Math, BR-68600000 Braganca, PA, Brazil
[4] Univ Fed Bahia, Dept Math, BR-40170110 Salvador, BA, Brazil
关键词
35B40; 35L70; 35A01; EQUATION; SHEAR;
D O I
10.1007/s40065-022-00411-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This manuscript deals with a Timoshenko system with damping and source. The existence and stability of the solution are analyzed taking into account the competition of the internal damping versus the logarithmic source. We use the potential well theory. For initial data in the stability set created by the Nehari surface, the existence of global solutions is proved using Faedo-Galerkin's approximation. The exponential decay is given by the Nakao theorem. A numerical approach is presented to illustrate the results obtained.
引用
收藏
页码:105 / 118
页数:14
相关论文
共 31 条
  • [1] Adams R.A., 1975, SOBOLEV SPACES, P2
  • [2] Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term
    Al-Gharabli, Mohammad M.
    Messaoudi, Salim A.
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (01) : 105 - 125
  • [3] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [4] INFLATIONARY MODELS WITH LOGARITHMIC POTENTIALS
    BARROW, JD
    PARSONS, P
    [J]. PHYSICAL REVIEW D, 1995, 52 (10): : 5576 - 5587
  • [5] BIALYNICKIBIRULA I, 1975, B ACAD POL SCI SMAP, V23, P461
  • [6] Bresse J. A. C., 1859, COURS MECANIQUE APPL
  • [7] Cazenave T., 1980, ANN FAC SCI TOULOUSE, V2, P21
  • [8] CODDINGTON E. A., 1955, THEORY ORDINARY DIFF
  • [9] Cordeiro S.M.S., 2019, PARTIAL DIFFER EQU A, V99
  • [10] Elishakoff I., 2021, PMM-J APPL MATH MEC, V3