Laser shock wave-induced enhanced thermal corrosion resistance of Ti6Al4V alloy fabricated by laser powder bed fusion

被引:10
|
作者
Bian, Hairong [1 ]
Wang, Zhao [1 ]
Liu, Jiajun [1 ]
Lu, Haifei [1 ]
Luo, Kaiyu [1 ]
Lu, Jinzhong [1 ]
机构
[1] Jiangsu Univ, Sch Mech Engn, Zhenjiang 212013, Jiangsu, Peoples R China
来源
SURFACE & COATINGS TECHNOLOGY | 2023年 / 452卷
基金
中国国家自然科学基金;
关键词
Ti6Al4V titanium alloy; Laser powder bed fusion; Laser shock peening; Microstructural evolution; Thermal corrosion resistance; HOT-CORROSION; OXIDATION BEHAVIOR; GRAIN-REFINEMENT; TITANIUM-ALLOY; SUPERALLOY; MECHANISM;
D O I
10.1016/j.surfcoat.2022.129096
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, the effect of laser shock peening (LSP) on the microstructural evolution and thermal corrosion behaviors of laser powder bed fusion processed (LPBFed) Ti6Al4V samples was characterised in Na2SO4 + NaCl mixed solutions at 500 degrees C, 600 degrees C and 700 degrees C. Thermal corrosion resistance was evaluated using thermo-kinetic curves, thermal corrosion products, and corrosion morphology. The results indicated that the thermal corrosion layer of the LSPed samples was thinner and denser than that of the LPBFed samples, and the mass gain of the LSPed samples was significantly reduced, suggesting a better thermal corrosion resistance. This is attributed to the refined grains, high-density dislocations, and nano-twins. Finally, the improvement mechanism of LSP on the thermal corrosion resistance of the LPBF-treated Ti6Al4V titanium alloy was revealed.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Microstructure and Corrosion Resistance of Ti6Al4V Manufactured by Laser Powder Bed Fusion
    Luo, Yiwa
    Wang, Mingyong
    Zhu, Jun
    Tu, Jiguo
    Jiao, Shuqiang
    METALS, 2023, 13 (03)
  • [2] Effect of constraint on fracture performance of Ti6Al4V alloy fabricated by laser powder bed fusion
    Xiao, Yingmeng
    Sun, Jingyu.
    Qian, Guian
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 131
  • [3] Comparison on the Electrochemical Corrosion Behavior of Ti6Al4V Alloys Fabricated by Laser Powder Bed Fusion and Casting
    Zhan, Zhongwei
    Zhang, Qi
    Wang, Shuaixing
    Liu, Xiaohui
    Zhang, Hao
    Sun, Zhihua
    Ge, Yulin
    Du, Nan
    MATERIALS, 2024, 17 (13)
  • [4] Effects of temperature on tensile and fracture performance of Ti6Al4V alloy fabricated by laser powder bed fusion
    Xiao, Yingmeng
    Qian, Guian
    Sun, Jingyu
    Berto, Filippo
    Correia, Jose A. F.
    Hong, Youshi
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2023, 125
  • [5] SURFACE ROUGHNESS OF Ti6Al4V ALLOY PRODUCED BY LASER POWDER BED FUSION
    Liovic, David
    Franulovic, Marina
    Ferlic, Luka
    Gubeljak, Nenad
    FACTA UNIVERSITATIS-SERIES MECHANICAL ENGINEERING, 2024, 22 (01) : 63 - 76
  • [6] Ti6Al4V matrix composites fabricated by laser powder bed fusion in dilute nitrogen
    Zhu, Lei
    Zhang, Kaiwang
    Fan, Shuqian
    Wei, Wenhou
    MATERIALS SCIENCE AND TECHNOLOGY, 2022, 38 (04) : 207 - 214
  • [7] Effect of heat treatment on microstructure and corrosion behavior of Ti6Al4V fabricated by laser beam powder bed fusion
    Zhang, Hongwei
    Qin, Wentao
    Man, Cheng
    Cui, Hongzhi
    Kong, Decheng
    Cui, Zhongyu
    Wang, Xin
    Dong, Chaofang
    CORROSION SCIENCE, 2022, 209
  • [8] Ti6Al4V scaffolds fabricated by laser powder bed fusion with hybrid volumetric energy density
    Gaur, Bhanupratap
    Soman, Deepak
    Ghyar, Rupesh
    Bhallamudi, Ravi
    RAPID PROTOTYPING JOURNAL, 2023, 29 (01) : 67 - 79
  • [9] Study of the Effect of Nanosecond Laser Texturing on the Corrosion Behavior of Ti6Al4V and Ti6Al4V Parts Produced by Powder Bed Fusion
    Queiroz, Fernanda Martins
    Ribeiro, Gleicy de Lima Xavier
    de Castro, Renato Spacini
    dos Santos, Rogerio Goes
    Vieira, Alexandre
    Terada, Maysa
    Bugarin, Aline de Fatima Santos
    de Rossi, Wagner
    Costa, Isolda
    MATERIALS PERFORMANCE AND CHARACTERIZATION, 2023, 12 (03)
  • [10] A Review of the Fatigue Behaviour of Laser Powder Bed Fusion Ti6Al4V
    Moloi, Tumelo
    Dzogbewu, Thywill Cephas
    Maringa, Maina
    Muiruri, Amos
    METALLURGICAL & MATERIALS ENGINEERING, 2025, 31 (01) : 288 - 310