Convexity and Monotonicity Involving the Complete Elliptic Integral of the First Kind

被引:6
作者
Tian, Jing-Feng [1 ]
Yang, Zhen-Hang [2 ]
机构
[1] North China Elect Power Univ, Dept Math & Phys, Yonghua St 619, Baoding 071003, Peoples R China
[2] State Grid Zhejiang Elect Power Co, Res Inst, Dept Sci & Technol, Hangzhou 310014, Peoples R China
关键词
Complete elliptic integral of the first kind; hypergeometric function; convexity; inequality; HYPERGEOMETRIC-FUNCTIONS; FUNCTIONAL INEQUALITIES;
D O I
10.1007/s00025-022-01799-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K(r) be the complete elliptic integral of the first kind defined on (0, 1). By virtue of the auxiliary function H-f,H-g = (f'/g') g - f, we prove that the function Q(p) (x) = ln (p root 1 - x)/K(root x) is strictly convex on (0, 1) if and only if 0 < p <= 4, thus answering a conjecture. Moreover, we completely described the monotonicity of Q(p) (x) on (0, 1) for different p is an element of (0, infinity).
引用
收藏
页数:18
相关论文
共 43 条
[1]   Sharp inequalities for the complete elliptic integral of the first kind [J].
Alzer, H .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 :309-314
[2]   Monotonicity theorems and inequalities for the complete elliptic integrals\ [J].
Alzer, H ;
Qiu, SL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (02) :289-312
[3]   A concavity property of the complete elliptic integral of the first kind [J].
Alzer, Horst ;
Richards, Kendall C. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (09) :758-768
[4]   FUNCTIONAL INEQUALITIES FOR HYPERGEOMETRIC-FUNCTIONS AND COMPLETE ELLIPTIC INTEGRALS [J].
ANDERSON, GD ;
VAMANAMURTHY, MK ;
VUORINEN, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (02) :512-524
[5]   FUNCTIONAL INEQUALITIES FOR COMPLETE ELLIPTIC INTEGRALS AND THEIR RATIOS [J].
ANDERSON, GD ;
VAMANAMURTHY, MK ;
VUORINEN, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (02) :536-549
[6]  
Biernacki M., 1955, ANN U MARIA CURIE, V9, P135, DOI DOI 10.4153/CMB-1967-074-9
[7]  
Byrd P.F., 1971, Handbook of Elliptic Integrals for Engineers and Scientists
[8]   ASYMPTOTIC-EXPANSION OF THE 1ST ELLIPTIC INTEGRAL [J].
CARLSON, BC ;
GUSTAFSON, JL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (05) :1072-1092
[9]   On the monotonicity and convexity for generalized elliptic integral of the first kind [J].
Chen, Ya-jun ;
Zhao, Tie-hong .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (02)
[10]   Functional Inequalities and Monotonicity Results for Modified Lommel Functions of the First Kind [J].
Gaunt, Robert E. .
RESULTS IN MATHEMATICS, 2022, 77 (01)