Central extensions of some solvable Leibniz superalgebras

被引:0
作者
Camacho, L. M. [1 ]
Navarro, R. M. [2 ]
Omirov, B. A. [3 ]
机构
[1] Univ Seville, Dept Matemat Aplicada1, Seville, Spain
[2] Univ Extremadura, Dept Matemat, Caceres, Spain
[3] Natl Univ Uzbekistan, Tashkent, Uzbekistan
关键词
Lie (Leibniz) superalgebras; Central extensions; NILPOTENT LIE-ALGEBRAS; DIMENSION LESS; NULL-FILIFORM; CLASSIFICATION; DEFORMATIONS; VARIETIES;
D O I
10.1016/j.laa.2022.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to the study of central extensions of some solvable Leibniz superalgebras. We show that a solvable Leibniz superalgebra with non-null center can be obtained by central extension of other solvable ones of lower dimensions. Moreover, we describe the central extensions for the maximal solvable Lie superalgebras with nilradical which neither char-acteristically nilpotent in non-split case nor do not involve characteristically nilpotent ones as a term in split case. Additionally, we apply two different procedures to the null-filiform Leibniz superalgebra and the model filiform Lie su-peralgebra. On the first one, we compute its central exten-sions and then study the maximal solvable extension of the superalgebras obtained. However, on the second procedure, we consider first its maximal solvable superalgebra and then study its central extensions. Finally, we compare the results obtained at the end of the two procedures.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:63 / 91
页数:29
相关论文
共 24 条
  • [1] Abdurasulov KK, 2022, Arxiv, DOI arXiv:2201.02776
  • [2] Abdurasulov K.K., 2019, DOKL AKAD NAUK RUZ, V5, P3
  • [3] Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras
    Adashev, J. K.
    Camacho, L. M.
    Omirov, B. A.
    [J]. JOURNAL OF ALGEBRA, 2017, 479 : 461 - 486
  • [4] On nilpotent and simple Leibniz algebras
    Albeverio, S
    Ayupov, SA
    Omirov, BA
    [J]. COMMUNICATIONS IN ALGEBRA, 2005, 33 (01) : 159 - 172
  • [5] Varieties of nilpotent complex Leibniz algebras of dimension less than five#
    Albeverio, S
    Omirov, BA
    Rakhimov, IS
    [J]. COMMUNICATIONS IN ALGEBRA, 2005, 33 (05) : 1575 - 1585
  • [6] Some deformations of nilpotent Lie superalgebras
    Bordemann, M.
    Gomez, J. R.
    Khakimdjanov, Yu.
    Navarro, R. M.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (05) : 1391 - 1403
  • [7] Classification of orbit closures of 4-dimensional complex Lie algebras
    Burde, D
    Steinhoff, C
    [J]. JOURNAL OF ALGEBRA, 1999, 214 (02) : 729 - 739
  • [8] On solvable Lie and Leibniz superalgebras with maximal codimension of nilradical
    Camacho, L. M.
    Navarro, R. M.
    Omirov, B. A.
    [J]. JOURNAL OF ALGEBRA, 2022, 591 : 500 - 522
  • [9] Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2
    de Graaf, Willem A.
    [J]. JOURNAL OF ALGEBRA, 2007, 309 (02) : 640 - 653
  • [10] EXTENSIONS OF (SUPER) LIE ALGEBRAS
    Fialowski, Alice
    Penkava, Michael
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (05) : 709 - 737