A Petrov-Galerkin immersed finite element method for steady Navier-Stokes interface problem with non-homogeneous jump conditions

被引:0
|
作者
Zhu, Na [1 ]
Rui, Hongxing [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Immersed finite element; Petrov-Galerkin; Multi-phase flow; EQUATIONS;
D O I
10.1016/j.cam.2024.115815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops a lowest -order Petrov-Galerkin immersed Q1 - Q0 method for solving Stokes interface problem. We make use of a uniform, interface -unfitted Cartesian mesh. An immersed Petrov-Galerkin formulation is presented, where the test spaces are conventional finite element spaces and the solution spaces satisfying the jump conditions. For the Stokes and Navier-Stokes interface problem, simple stabilized items are introduced. The nonlinear convective term is treated using Picard's iteration. Extensive numerical experiments validate the feasibility and optimal convergence order for the Petrov-Galerkin immersed Q1 - Q0 scheme both with homogeneous and non -homogeneous jumps.
引用
收藏
页数:13
相关论文
empty
未找到相关数据