Theabrownin as a Potential Prebiotic Compound Regulates Lipid Metabolism via the Gut Microbiota, Microbiota-Derived Metabolites, and Hepatic FoxO/PPAR Signaling Pathways

被引:7
|
作者
Xiao, Yue [1 ,2 ]
Yang, Dongmei [1 ,2 ]
Zhang, Haoran [3 ]
Guo, Huan [4 ,5 ]
Liao, Ying [6 ]
Lian, Changhong [7 ]
Yao, Yuqin [1 ,2 ]
Gao, Hong [4 ,5 ]
Huang, Yina [1 ,2 ]
机构
[1] Sichuan Univ, West China Sch Publ Hlth, Mol Toxicol Key Lab Sichuan Prov Educ Off, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Hosp 4, Chengdu 610041, Peoples R China
[3] Changzhi Med Coll, Clin Coll 1, Changzhi 046013, Peoples R China
[4] Sichuan Univ, Coll Biomass Sci & Engn, Chengdu 610065, Peoples R China
[5] Sichuan Univ, Hlth Food Evaluat Res Ctr, Chengdu 610065, Peoples R China
[6] Sichuan Normal Univ, Coll Life Sci, Chengdu 610101, Peoples R China
[7] Heping Hosp, Changzhi Med Coll, Changzhi 046099, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
theabrownin; lipid metabolism; gut microbiota; gut-liveraxis; prebiotics; DIET-INDUCED OBESITY; FATTY LIVER-DISEASE; AMPK ACTIVATION; STEATOSIS; ACIDS;
D O I
10.1021/acs.jafc.3c08541
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The dysregulation of lipid metabolism poses a significant health threat, necessitating immediate dietary intervention. Our previous research unveiled the prebiotic-like properties of theabrownin. This study aimed to further investigate the theabrownin-gut microbiota interactions and their downstream effects on lipid metabolism using integrated physiological, genomic, metabolomic, and transcriptomic approaches. The results demonstrated that theabrownin significantly ameliorated dyslipidemia, hepatic steatosis, and systemic inflammation induced by a high-fat/high-cholesterol diet (HFD). Moreover, theabrownin significantly improved HFD-induced gut microbiota dysbiosis and induced significant alterations in microbiota-derived metabolites. Additionally, the detailed interplay between theabrownin and gut microbiota was revealed. Analysis of hepatic transcriptome indicated that FoxO and PPAR signaling pathways played pivotal roles in response to theabrownin-gut microbiota interactions, primarily through upregulating hepatic Foxo1, Prkaa1, Pck1, Cdkn1a, Bcl6, Klf2, Ppara, and Pparg, while downregulating Ccnb1, Ccnb2, Fabp3, and Plin1. These findings underscored the critical role of gut-liver axis in theabrownin-mediated improvements in lipid metabolism disorders and supported the potential of theabrownin as an effective prebiotic compound for targeted regulation of metabolic diseases.
引用
收藏
页码:8506 / 8520
页数:15
相关论文
共 41 条
  • [41] Schizochytrium Oil and Its Mixture with Fish Oil and Sacha inchi Oil Ameliorate Gut Microbiota Composition and Lipid Metabolism via the Fatty Acid Synthetase/3-hydroxy-3-methyl Glutaryl Coenzyme A Reductase/Sterol Regulatory Element Binding Protein Signaling Pathway
    Chen, Jie
    Liu, Yilin
    Huang, Ying
    Tong, Aijun
    Liu, Bin
    Zeng, Feng
    EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, 2022, 124 (04)