Studying Plastic Deformation Mechanism in β-Ti-Nb Alloys by Molecular Dynamic Simulations

被引:0
|
作者
Wang, Hongbo [1 ,2 ]
Huang, Bowen [1 ]
Hu, Wangyu [1 ]
Huang, Jian [2 ,3 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, Shanghai 200050, Peoples R China
[3] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
关键词
Ti-Nb alloy; molecular dynamics (MD); atom simulations; deformation mechanisms; PHASE-STABILITY; ELASTIC PROPERTIES; AB-INITIO; SUPERELASTICITY; TRANSFORMATION; TRANSITION; MODEL; ROOM;
D O I
10.3390/met14030318
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using molecular dynamics (MD) simulations, the transition of the plastic deformation mechanism of Ti-Nb alloys during the tensile process was studied, and the effects of temperature, Nb composition, and strain rate on the deformation mechanism were also investigated. The results show that the deformation process of Ti-Nb alloys involves defect formation, followed by twinning and omega-phase transition, and ultimately, dislocation slip occurs. The <111>{112} slip makes the omega-phase easily overcome the transition energy barrier, inducing the phase transition in the twinning process. Increasing temperature will enhance the plasticity and reduce the strength of the material, while increasing Nb composition will have the opposite effect on the deformation. The simulations show a competition between twinning and dislocation slip mechanisms. With the increase in Nb content, the plastic deformation mechanism of the alloy will change from twinning to dislocation slip. In addition, the plastic strain range increases with the increase in the deformation rate in Ti-Nb alloys. At a higher strain rate, the alloy's plastic strain range is affected by various deformation mechanisms, which significantly influence the plasticity of the material. The findings of this study provide further insights into the design of Ti-Nb-based alloys.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Ageing texture of hot rolled and solution treated Ti-Nb alloys
    Banumathy, Sankaranarayanan
    Mandal, Rajiv Kumar
    Singh, Ashok Kumar
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2013, 104 (10) : 941 - 953
  • [32] The Calculated and Experimental Elastic Properties of Quenched Biocompatible Ti-Nb, Ti-Nb-Zr, Ti-Nb-Zr-Sn, and Ti-Nb-Zr-Sn-Ta Titanium Alloys
    Korenev, A. A.
    Illarionov, A. G.
    PHYSICS OF METALS AND METALLOGRAPHY, 2022, 123 (11) : 1132 - 1138
  • [33] Improvement of Superelastic Performance of Ti-Nb Binary Alloys for Biomedical Applications
    W. Elmay
    E. Patoor
    T. Gloriant
    F. Prima
    P. Laheurte
    Journal of Materials Engineering and Performance, 2014, 23 : 2471 - 2476
  • [34] Phase stability change with Zr content in β-type Ti-Nb alloys
    Abdel-Hady, Mohamed
    Fuwa, Hiroki
    Hinoshita, Keita
    Kimura, Haruka
    Shinzato, Yoshifumi
    Morinaga, Masahiko
    SCRIPTA MATERIALIA, 2007, 57 (11) : 1000 - 1003
  • [35] Microstructure and dry wear properties of Ti-Nb alloys for dental prostheses
    徐丽娟
    肖树龙
    田竟
    陈玉勇
    黄玉东
    Transactions of Nonferrous Metals Society of China, 2009, 19(S3) (S3) : 639 - 644
  • [36] Microstructure and dry wear properties of Ti-Nb alloys for dental prostheses
    Xu Li-juan
    Xiao Shu-long
    Tian Jing
    Chen Yu-yong
    Huang Yu-dong
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2009, 19 : S639 - S644
  • [37] Optimisation of mechanical properties of Ti-Nb binary alloys for biomedical applications
    Elmay, W.
    Patoor, E.
    Bolle, B.
    Gloriant, T.
    Prima, F.
    Eberhardt, A.
    Laheurte, P.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2011, 14 : 119 - 120
  • [38] Improvement of Superelastic Performance of Ti-Nb Binary Alloys for Biomedical Applications
    Elmay, W.
    Patoor, E.
    Gloriant, T.
    Prima, F.
    Laheurte, P.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (07) : 2471 - 2476
  • [39] Microstructure, Mechanical Properties, and Springback of Ti-Nb Alloys Modified by Mo Addition
    Li, Qiang
    Zhang, Ran
    Li, Junjie
    Qi, Qiang
    Liu, Xuyan
    Nakai, Masaaki
    Niinomi, Mitsuo
    Nakano, Takayoshi
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2020, 29 (08) : 5366 - 5373
  • [40] Oxidization on phase transformations in Ti-Nb high temperature shape memory alloys
    Xu, Zhiyuan
    Chen, Yulin
    Zhang, Peng
    Wang, Bin
    Zhang, Jian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1003