Coarse-grained modeling of DNA-RNA hybrids

被引:3
作者
Ratajczyk, Eryk J. [1 ,2 ]
Sulc, Petr [3 ,4 ,5 ]
Turberfield, Andrew J. [1 ,2 ]
Doye, Jonathan P. K. [6 ]
Louis, Ard A. [7 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] Univ Oxford, Kavli Inst Nanosci Discovery, Dorothy Crowfoot Hodgkin Bldg, South Parks Rd, Oxford OX1 3QU, England
[3] Arizona State Univ, Sch Mol Sci, 1001 South McAllister Ave, Tempe, AZ 85281 USA
[4] Arizona State Univ, Biodesign Inst, Ctr Mol Design & Biomimet, 1001 South McAllister Ave, Tempe, AZ 85281 USA
[5] Tech Univ Munich, Sch Nat Sci, Dept Biosci, D-85748 Garching, Germany
[6] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, South Parks Rd, Oxford OX1 3QZ, England
[7] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; THERMODYNAMIC PARAMETERS; CRYSTAL-STRUCTURE; STRANDED-DNA; STABILITY; NANOSTRUCTURES; DISPLACEMENT; RECOGNITION; NANOROBOT; DUPLEXES;
D O I
10.1063/5.0199558
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce oxNA, a new model for the simulation of DNA-RNA hybrids that is based on two previously developed coarse-grained models-oxDNA and oxRNA. The model naturally reproduces the physical properties of hybrid duplexes, including their structure, persistence length, and force-extension characteristics. By parameterizing the DNA-RNA hydrogen bonding interaction, we fit the model's thermodynamic properties to experimental data using both average-sequence and sequence-dependent parameters. To demonstrate the model's applicability, we provide three examples of its use-calculating the free energy profiles of hybrid strand displacement reactions, studying the resolution of a short R-loop, and simulating RNA-scaffolded wireframe origami.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Improved Coarse-Grained Modeling of Cholesterol-Containing Lipid Bilayers
    Daily, Michael D.
    Olsen, Brett N.
    Schlesinger, Paul H.
    Ory, Daniel S.
    Baker, Nathan A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (05) : 2137 - 2150
  • [42] Understanding Creep Behavior of Semicrystalline Polymer via Coarse-Grained Modeling
    Wu, Chao
    Wu, Ruidong
    Xia, Wenjie
    Tam, Lik-ho
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2019, 57 (24) : 1779 - 1791
  • [43] Characterizing the Motion of Jointed DNA Nanostructures Using a Coarse-Grained Model
    Sharma, Rahul
    Schreck, John S.
    Romano, Flavio
    Louis, Ard A.
    Doye, Jonathan P. K.
    ACS NANO, 2017, 11 (12) : 12426 - 12435
  • [44] Coarse-Grained Modeling of the Self-Association of Therapeutic Monoclonal Antibodies
    Chaudhri, Anuj
    Zarraga, Isidro E.
    Kamerzell, Tim J.
    Brandt, J. Paul
    Patapoff, Thomas W.
    Shire, Steven J.
    Voth, Gregory A.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (28) : 8045 - 8057
  • [45] Coarse-Grained Modeling of Polystyrene in Various Environments by Iterative Boltzmann Inversion
    Bayramoglu, Beste
    Faller, Roland
    MACROMOLECULES, 2012, 45 (22) : 9205 - 9219
  • [46] Spontaneous DNA-RNA hybrids: differential impacts throughout the cell cycle
    Gomez-Gonzalez, Belen
    Barroso, Sonia
    Herrera-Moyano, Emilia
    Aguilera, Andres
    CELL CYCLE, 2020, 19 (05) : 525 - 531
  • [47] Modeling biomembranes and red blood cells by coarse-grained particle methods
    Li, H.
    Chang, H. Y.
    Yang, J.
    Lu, L.
    Tang, Y. H.
    Lykotrafitis, G.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2018, 39 (01) : 3 - 20
  • [48] Coarse-grained modeling of the nucleation of polycyclic aromatic hydrocarbons into soot precursors
    Hernandez-Rojas, J.
    Calvo, F.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (09) : 5123 - 5132
  • [49] Coarse-Grained Structural Modeling of Molecular Motors Using Multibody Dynamics
    Parker, David
    Bryant, Zev
    Delp, Scott L.
    CELLULAR AND MOLECULAR BIOENGINEERING, 2009, 2 (03) : 366 - 374
  • [50] Necessity of High-Resolution for Coarse-Grained Modeling of Flexible Proteins
    Jia, Zhiguang
    Chen, Jianhan
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2016, 37 (18) : 1725 - 1733