Comprehensive Analysis of Mammography Images Using Multi-Branch Attention Convolutional Neural Network

被引:1
|
作者
Al-Mansour, Ebtihal [1 ]
Hussain, Muhammad [1 ]
Aboalsamh, Hatim A. [1 ]
Al-Ahmadi, Saad A. [1 ]
机构
[1] King Saud Univ, Dept Comp Sci, CCIS, Riyadh 11451, Saudi Arabia
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 24期
关键词
breast cancer; mammography; deep learning; multi-label classification; convolutional neural network (CNN);
D O I
10.3390/app132412995
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Breast cancer profoundly affects women's lives; its early diagnosis and treatment increase patient survival chances. Mammography is a common screening method for breast cancer, and many methods have been proposed for automatic diagnosis. However, most of them focus on single-label classification and do not provide a comprehensive analysis concerning density, abnormality, and severity levels. We propose a method based on the multi-label classification of two-view mammography images to comprehensively diagnose a patient's condition. It leverages the correlation between density type, lesion type, and states of lesions, which radiologists usually perform. It simultaneously classifies mammograms into the corresponding density, abnormality type, and severity level. It takes two-view mammograms (with craniocaudal and mediolateral oblique views) as input, analyzes them using ConvNeXt and the channel attention mechanism, and integrates the information from the two views. Finally, the fused information is passed to task-specific multi-branches, which learn task-specific representations and predict the relevant state. The system was trained, validated, and tested using two public domain benchmark datasets, INBreast and the Curated Breast Imaging Subset of DDSM (CBIS-DDSM), and achieved state-of-the-art results. The proposed computer-aided diagnosis (CAD) system provides a holistic observation of a patient's condition. It gives the radiologists a comprehensive analysis of the mammograms to prepare a full report of the patient's condition, thereby increasing the diagnostic precision.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Facial Expression Recognition Using Multi-Branch Attention Convolutional Neural Network
    He, Yinggang
    IEEE ACCESS, 2023, 11 : 1244 - 1253
  • [2] Multi-branch convolutional neural network in building polygonization using remote sensing images
    Xu, Yajin
    Schuegraf, Philipp
    Bittner, Ksenia
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2025, 93 (01): : 79 - 100
  • [3] Attention-Guided Multi-Branch Convolutional Neural Network for Mitosis Detection From Histopathological Images
    Lei, Haijun
    Liu, Shaomin
    Elazab, Ahmed
    Gong, Xuehao
    Lei, Baiying
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (02) : 358 - 370
  • [4] Shallow multi-branch attention convolutional neural network for micro-expression recognition
    Wang, Gang
    Huang, Shucheng
    Tao, Zhe
    MULTIMEDIA SYSTEMS, 2023, 29 (04) : 1967 - 1980
  • [5] Shallow multi-branch attention convolutional neural network for micro-expression recognition
    Gang Wang
    Shucheng Huang
    Zhe Tao
    Multimedia Systems, 2023, 29 : 1967 - 1980
  • [6] Multi-branch convolutional neural network with cross-attention mechanism for emotion recognition
    Yan, Fei
    Guo, Zekai
    Iliyasu, Abdullah M.
    Hirota, Kaoru
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [7] Multi-branch Aggregate Convolutional Neural Network for Image Classification
    Fan, Rui
    Jiang, Pinqun
    Zeng, Shangyou
    Li, Peng
    SERVICE-ORIENTED COMPUTING, ICSOC 2018, 2019, 11434 : 102 - 112
  • [8] Multi-branch sustainable convolutional neural network for disease classification
    Naz, Maria
    Shah, Munam Ali
    Khattak, Hasan Ali
    Wahid, Abdul
    Asghar, Muhammad Nabeel
    Rauf, Hafiz Tayyab
    Khan, Muhammad Attique
    Ameer, Zoobia
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (05) : 1621 - 1633
  • [9] MBANet: A 3D convolutional neural network with multi-branch attention for brain tumor segmentation from MRI images
    Cao, Yuan
    Zhou, Weifeng
    Zang, Min
    An, Dianlong
    Feng, Yan
    Yu, Bin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 80
  • [10] Super-resolution of digital rock images with hybrid attention multi-branch neural network
    Yang, Yongfei
    Wang, Jinye
    Liu, Fugui
    Zhang, Lei
    Sun, Hai
    Zhong, Junjie
    Zhang, Kai
    Yao, Jun
    GAS SCIENCE AND ENGINEERING, 2024, 128