Polyol techniques have recently emerged as viable soft chemical approaches for the production of ultrafine metal crystals. In this work, we described a simple method of ruthenium nanochains ornamented on an octahedral palladium (RuNCs@Oct-Pd) hybrid nanonet assembly synthesized by using polyvinylpyrrolidone (PVP, stabilizing agent) and 1,2-propanediol (1,2-PD, reducing solvent). The prepared nanonet assembly plays a vital role for reduction of toxic nitro substances such as (4-nitrophenol, 4-NP) and hazardous antimicrobial agents (nitrofurantoin, NFT). The morphology of the nanonet assembly was tested by XRD, SEM, FE-TEM, XPS, and UV-vis spectral techniques. The RuNCs@Oct-Pd nanonet assembly demonstrates enhanced catalytic reduction of 4-NP and NFT using NaBH4 (reductant) at ambient temperature. The RuNCs@Oct-Pd hybrid nanonet assembly exhibited a higher rate constant (k(app) = 0.4332 s(-1)) and turnover frequency (TOF = 5.0 x 10(-2) s(-1)) than commercial catalysts like Ru/C and Pd/C because of substantial catalytic active sites, high surface-to-volume ratio, rapid surface-hydrogen transfer, and superior stability. Furthermore, the hybrid catalyst in this combination showed outstanding durability and reusability, making it suitable for real-world applications.