Real-world prediction of preclinical Alzheimer's disease with a deep generative model

被引:4
|
作者
Hwang, Uiwon [1 ]
Kim, Sung-Woo [2 ]
Jung, Dahuin [3 ]
Kim, SeungWook [2 ]
Lee, Hyejoo [4 ,5 ]
Seo, Sang Won [4 ,5 ]
Seong, Joon-Kyung [6 ,7 ,8 ]
Yoon, Sungroh [3 ,9 ]
机构
[1] Yonsei Univ, Div Digital Healthcare, Wonju 26493, South Korea
[2] Korea Univ, Dept Bioconvergence Engn, Seoul 02841, South Korea
[3] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
[4] Sungkyunkwan Univ, Samsung Med Ctr, Sch Med, Dept Neurol, Seoul 06351, South Korea
[5] Samsung Med Ctr, Neurosci Ctr, Seoul 06351, South Korea
[6] Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
[7] Korea Univ, Sch Biomed Engn, Seoul 02841, South Korea
[8] Korea Univ, Coll Hlth Sci, Interdisciplinary Program Precis Publ Hlth, Seoul 02841, South Korea
[9] Seoul Natl Univ, Interdisciplinary Program Artificial Intelligence, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Deep generative models; Preclinical Alzheimer's disease; Real-world classification; Explainable AI; HIPPOCAMPAL ATROPHY; NEURAL-NETWORKS; PROGRESSION; NEURODEGENERATION; FUSION; TAU; SEX;
D O I
10.1016/j.artmed.2023.102654
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Amyloid positivity is an early indicator of Alzheimer's disease and is necessary to determine the disease. In this study, a deep generative model is utilized to predict the amyloid positivity of cognitively normal individuals using proxy measures, such as structural MRI scans, demographic variables, and cognitive scores, instead of invasive direct measurements. Through its remarkable efficacy in handling imperfect datasets caused by missing data or labels, and imbalanced classes, the model outperforms previous studies and widely used machine learning approaches with an AUROC of 0.8609. Furthermore, this study illuminates the model's adaptability to diverse clinical scenarios, even when feature sets or diagnostic criteria differ from the training data. We identify the brain regions and variables that contribute most to classification, including the lateral occipital lobes, posterior temporal lobe, and APOE epsilon 4 allele. Taking advantage of deep generative models, our approach can not only provide inexpensive, non-invasive, and accurate diagnostics for preclinical Alzheimer's disease, but also meet real-world requirements for clinical translation of a deep learning model, including transferability and interpretability.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Preclinical prediction of Alzheimer's disease
    Albert, MS
    NEUROBIOLOGY OF AGING, 2002, 23 (01) : S561 - S561
  • [2] Leveraging generative AI to prioritize drug repurposing candidates for Alzheimer’s disease with real-world clinical validation
    Chao Yan
    Monika E. Grabowska
    Alyson L. Dickson
    Bingshan Li
    Zhexing Wen
    Dan M. Roden
    C. Michael Stein
    Peter J. Embí
    Josh F. Peterson
    QiPing Feng
    Bradley A. Malin
    Wei-Qi Wei
    npj Digital Medicine, 7
  • [3] Leveraging generative AI to prioritize drug repurposing candidates for Alzheimer's disease with real-world clinical validation
    Yan, Chao
    Grabowska, Monika E.
    Dickson, Alyson L.
    Li, Bingshan
    Wen, Zhexing
    Roden, Dan M.
    Stein, C. Michael
    Embi, Peter J.
    Peterson, Josh F.
    Feng, Qiping
    Malin, Bradley A.
    Wei, Wei-Qi
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [4] A deep generative multimodal imaging genomics framework for Alzheimer's disease prediction
    Dolci, Giorgio
    Rahaman, Md Abdur
    Chen, Jiayu
    Duan, Kuaikuai
    Fu, Zening
    Abrol, Anees
    Menegaz, Gloria
    Calhoun, Vince D.
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 41 - 44
  • [5] Early prediction of Alzheimer's disease and related dementias using real-world electronic health records
    Li, Qian
    Yang, Xi
    Xu, Jie
    Guo, Yi
    He, Xing
    Hu, Hui
    Lyu, Tianchen
    Marra, David
    Miller, Amber
    Smith, Glenn
    DeKosky, Steven
    Boyce, Richard D.
    Schliep, Karen
    Shenkman, Elizabeth
    Maraganore, Demetrius
    Wu, Yonghui
    Bian, Jiang
    ALZHEIMERS & DEMENTIA, 2023, 19 (08) : 3506 - 3518
  • [6] Generating real-world hypergraphs via deep generative models
    Zuo, Xianglin
    Chen, Wenqi
    Song, Xianduo
    Wang, Xin
    Wang, Ying
    INFORMATION SCIENCES, 2023, 647
  • [7] Real-World Use of Symptomatic Treatments in Early Alzheimer's Disease
    Garcia, Maria Joao
    Leadley, Regina
    Lang, Shona
    Ross, Janine
    Vinand, Elizabeth
    Ballard, Clive
    Gsteiger, Sandro
    JOURNAL OF ALZHEIMERS DISEASE, 2023, 91 (01) : 151 - 167
  • [8] Real-world evidence in Alzheimer's disease: The ROADMAP Data Cube
    Janssen, Olin
    Vos, Stephanie J. B.
    Garcia-Negredo, Gloria
    Tochel, Claire
    Gustavsson, Anders
    Smith, Michael
    Ly, Amanda
    Nelson, Mia
    Baldwin, Helen
    Sudlow, Catherine
    Bexelius, Christin
    Jindra, Christoph
    Vaci, Nemanja
    Bauermeister, Sarah
    Gallacher, John
    Ponjoan, Anna
    Dufouil, Carole
    Olmo, Josep Garre
    Pedersen, Lars
    Skoog, Ingmar
    Hottgenroth, Antje
    Visser, Pieter Jelle
    van der Lei, Johan
    Diaz, Carlos
    ALZHEIMERS & DEMENTIA, 2020, 16 (03) : 461 - 471
  • [9] Real-world evaluation of compliance and preference in Alzheimer's disease treatment
    Pai, Ming-Chyi
    Aref, Hany
    Bassil, Nazem
    Kandiah, Nagaendran
    Lee, Jae-Hong
    Srinivasan, A. V.
    diTommaso, Shelley
    Yuksel, Ozgur
    CLINICAL INTERVENTIONS IN AGING, 2015, 10 : 1779 - 1788
  • [10] Real-world comparative risk of rhabdomyolysis with cholinesterase inhibitors for Alzheimer's disease
    Landsman-Blumberg, Pamela B.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 : 599 - 599