Random logistic machine (RLM): Transforming statistical models into machine learning approach

被引:1
|
作者
Li, Yu-Shan [1 ]
Guo, Chao-Yu [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Coll Med, Inst Publ Hlth, Div Biostat & Data Sci, Taipei 112304, Taiwan
关键词
Logistic regression; random forest; machine learning; bagging; prediction; ENSEMBLE;
D O I
10.1080/03610926.2023.2268767
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Data science is booming with big data, and machine learning provides better predictive analyses. However, conventional statistical models can effortlessly interpret the effect estimates, and the prediction models are generally in a closed form. Therefore, this research integrates the logistic regression model's core with the Random Forest structure to create a blended novel machine learning method, the Random Logistic Machine (RLM). In this way, the new approach preserves the statistical and machine learning advantages. Computer simulation studies examined the predictive ability of RLM, random forest, and Logistic Regression under various scenarios. The results showed that the RLM delivers a comparable performance to Random Forests and Logistic Regression. An application to the Breast Cancer Wisconsin (Diagnostic) Data Set also demonstrates the superior performance of the new approach.
引用
收藏
页码:7517 / 7525
页数:9
相关论文
共 50 条
  • [21] A comparison of regularized logistic regression and random forest machine learning models for daytime diagnosis of obstructive sleep apnea
    Farahnaz Hajipour
    Mohammad Jafari Jozani
    Zahra Moussavi
    Medical & Biological Engineering & Computing, 2020, 58 : 2517 - 2529
  • [22] An epistemic approach to the formal specification of statistical machine learning
    Yusuke Kawamoto
    Software and Systems Modeling, 2021, 20 : 293 - 310
  • [23] A Statistical Machine Learning Approach to Yield Curve Forecasting
    Sambasivan, Rajiv
    Das, Sourish
    2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS), 2017,
  • [24] Crop Type Prediction: A Statistical and Machine Learning Approach
    Bhuyan, Bikram Pratim
    Tomar, Ravi
    Singh, T. P.
    Cherif, Amar Ramdane
    SUSTAINABILITY, 2023, 15 (01)
  • [25] An epistemic approach to the formal specification of statistical machine learning
    Kawamoto, Yusuke
    SOFTWARE AND SYSTEMS MODELING, 2021, 20 (02): : 293 - 310
  • [26] Learning to Segment Using Machine-Learned Penalized Logistic Models
    Yue, Yong
    Tagare, Hemant D.
    2009 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPR WORKSHOPS 2009), VOLS 1 AND 2, 2009, : 121 - +
  • [27] Comparison of Statistical Logistic Regression and RandomForest Machine Learning Techniques in Predicting Diabetes
    Daghistani, Tahani
    Alshammari, Riyad
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2020, 11 (02) : 78 - 83
  • [28] Accuracy and explainability of statistical and machine learning xG models in football
    Cefis, Mattia
    Carpita, Maurizio
    STATISTICS, 2025, 59 (02) : 426 - 445
  • [29] Machine learning and statistical models for analyzing multilevel patent data
    Qi, Sunyun
    Zhang, Yu
    Gu, Hua
    Zhu, Fei
    Gao, Meiying
    Liang, Hongxiao
    Zhang, Qifeng
    Gao, Yanchao
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [30] Integration of machine learning and statistical models for crash frequency modeling
    Zhou, Dongqin
    Gayah, Vikash V.
    Wood, Jonathan S.
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2023, 15 (10): : 1408 - 1419