Random logistic machine (RLM): Transforming statistical models into machine learning approach

被引:1
作者
Li, Yu-Shan [1 ]
Guo, Chao-Yu [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Coll Med, Inst Publ Hlth, Div Biostat & Data Sci, Taipei 112304, Taiwan
关键词
Logistic regression; random forest; machine learning; bagging; prediction; ENSEMBLE;
D O I
10.1080/03610926.2023.2268767
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Data science is booming with big data, and machine learning provides better predictive analyses. However, conventional statistical models can effortlessly interpret the effect estimates, and the prediction models are generally in a closed form. Therefore, this research integrates the logistic regression model's core with the Random Forest structure to create a blended novel machine learning method, the Random Logistic Machine (RLM). In this way, the new approach preserves the statistical and machine learning advantages. Computer simulation studies examined the predictive ability of RLM, random forest, and Logistic Regression under various scenarios. The results showed that the RLM delivers a comparable performance to Random Forests and Logistic Regression. An application to the Breast Cancer Wisconsin (Diagnostic) Data Set also demonstrates the superior performance of the new approach.
引用
收藏
页码:7517 / 7525
页数:9
相关论文
共 50 条
  • [11] Investigation of Random Laser in the Machine Learning Approach
    Santos, Emanuel P.
    Silva, Rodrigo F.
    Maciel, Celio V. T.
    Luz, Daniel F.
    Silva, Pedro F. A.
    BRAZILIAN JOURNAL OF PHYSICS, 2024, 54 (03)
  • [12] Comparison of Statistical and Machine-Learning Models on Road Traffic Accident Severity Classification
    Infante, Paulo
    Jacinto, Goncalo
    Afonso, Anabela
    Rego, Leonor
    Nogueira, Vitor
    Quaresma, Paulo
    Saias, Jose
    Santos, Daniel
    Nogueira, Pedro
    Silva, Marcelo
    Costa, Rosalina Pisco
    Gois, Patricia
    Manuel, Paulo Rebelo
    COMPUTERS, 2022, 11 (05)
  • [13] Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach
    Yoon, Jaehyun
    COMPUTATIONAL ECONOMICS, 2021, 57 (01) : 247 - 265
  • [14] Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach
    Jaehyun Yoon
    Computational Economics, 2021, 57 : 247 - 265
  • [15] Statistical quantification of confounding bias in machine learning models
    Spisak, Tamas
    GIGASCIENCE, 2022, 11
  • [16] Assessing Hydrological Simulations with Machine Learning and Statistical Models
    Rozos, Evangelos
    HYDROLOGY, 2023, 10 (02)
  • [17] Machine Learning Based Optimized Pruning Approach for Decoding in Statistical Machine Translation
    Banik, Debajyoty
    Ekbal, Asif
    Bhattacharyya, Pushpak
    IEEE ACCESS, 2019, 7 : 1736 - 1751
  • [18] Statistical and machine learning models for predicting spalling in CRCP
    Al-Khateeb, Ghazi G.
    Alnaqbi, Ali
    Zeiada, Waleed
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [19] Machine learning models to predict onset of dementia: A label learning approach
    Nori, Vijay S.
    Hane, Christopher A.
    Crown, William H.
    Au, Rhoda
    Burke, William J.
    Sanghavi, Darshak M.
    Bleicher, Paul
    ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 2019, 5 (01) : 918 - 925
  • [20] A comparison of regularized logistic regression and random forest machine learning models for daytime diagnosis of obstructive sleep apnea
    Hajipour, Farahnaz
    Jozani, Mohammad Jafari
    Moussavi, Zahra
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (10) : 2517 - 2529