Dynamics of Ginzburg-Landau vortices for vector fields on surfaces

被引:0
|
作者
Canevari, Giacomo [1 ]
Segatti, Antonio [2 ]
机构
[1] Univ Verona, Dipartimento Informat, Str Grazie 15, I-37134 Verona, Italy
[2] Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 5, I-27100 Pavia, Italy
关键词
Ginzburg-Landau; Vector fields on surfaces; Gradient flow of the renormalized; energy; Gamma convergence; GAMMA-CONVERGENCE; LOWER BOUNDS; FUNCTIONALS; ENERGY;
D O I
10.1016/j.jfa.2023.110156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the gradient flow of the following Ginzburg-Landau type energy F-epsilon(u) := 1/2 integral(M) |Du|(2)(g) + 1/2 epsilon(2) (|u|(2)(g)-1)(2) vol(g). 2 epsilon 2 This energy is defined on tangent vector fields on a 2-dimensional closed and oriented Riemannian manifold M (here D stands for the covariant derivative) and depends on a small parameter epsilon > 0. If the energy satisfies proper bounds, when epsilon -> 0 the second term forces the vector fields to have unit length. However, due to the incompatibility for vector fields on M between the Sobolev regularity and the unit norm constraint, critical points of F epsilon tend to generate a finite number of singular points (called vortices) having non-zero index (when the Euler characteristic is non-zero). These types of problems have been extensively analyzed in the recent paper by R. Ignat & R. Jerrard [19]. As in Euclidean case (see, among the others [8]), the position of the vortices is ruled by the so-called renormalized energy. In this paper we are interested in the dynamics of vortices. We rigorously prove that the vortices move according to the gradient flow of the renormalized energy, which is the limit behaviour when epsilon -> 0 of the gradient flow of the GinzburgLandau energy.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:98
相关论文
共 50 条
  • [1] MOTION OF VORTICES FOR THE EXTRINSIC GINZBURG-LANDAU FLOW FOR VECTOR FIELDS ON SURFACES
    Canevari, Giacomo
    Segatti, Antonio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (08): : 2087 - 2116
  • [2] DYNAMICS OF VORTICES FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Miot, Evelyne
    ANALYSIS & PDE, 2009, 2 (02): : 159 - 186
  • [3] DYNAMICS OF GINZBURG-LANDAU AND GROSS-PITAEVSKII VORTICES ON MANIFOLDS
    Chen, Ko-Shin
    Sternberg, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) : 1905 - 1931
  • [4] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Chugreeva, Olga
    Melcher, Christof
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (01): : 113 - 143
  • [5] VORTEX PATTERNS IN GINZBURG-LANDAU MINIMIZERS
    Serfaty, Sylvia
    Sandier, Etienne
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 246 - +
  • [6] On a system of multi-component Ginzburg-Landau vortices
    Hadiji, Rejeb
    Han, Jongmin
    Sohn, Juhee
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [7] Generation of vortices in the Ginzburg-Landau heat flow
    Kowalczyk, Michas
    Lamy, Xavier
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2024, 41 (06): : 1509 - 1526
  • [8] Topological Singularities in Periodic Media: Ginzburg-Landau and Core-Radius Approaches
    Alicandro, Roberto
    Braides, Andrea
    Cicalese, Marco
    De Luca, Lucia
    Piatnitski, Andrey
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 243 (02) : 559 - 609
  • [9] Ginzburg-Landau Vortices, Coulomb Gases, and Renormalized Energies
    Serfaty, Sylvia
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (03) : 660 - 680
  • [10] THIN FILM LIMITS FOR GINZBURG-LANDAU WITH STRONG APPLIED MAGNETIC FIELDS
    Alama, Stan
    Bronsard, Lia
    Galvao-Sousa, Bernardo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) : 97 - 124