Improving the Accuracy of Landsat 8 Land Surface Temperature in Arid Regions by MODIS Water Vapor Imagery

被引:7
作者
Arabi Aliabad, Fahime [1 ]
Zare, Mohammad [1 ]
Ghafarian Malamiri, Hamidreza [2 ]
Ghaderpour, Ebrahim [3 ,4 ,5 ]
机构
[1] Yazd Univ, Fac Nat Resources & Desert Studies, Dept Arid Lands Management, Yazd 8915818411, Iran
[2] Yazd Univ, Dept Geog, Yazd 8915818411, Iran
[3] Sapienza Univ Rome, Dept Earth Sci, Ple Aldo Moro 5, I-00185 Rome, Italy
[4] Sapienza Univ Rome, CERI Res Ctr, Ple Aldo Moro 5, I-00185 Rome, Italy
[5] Earth & Space Inc, Calgary, AB T3A 5B1, Canada
关键词
cross-validation; Landsat; Land surface temperature; MODIS; Sentinel-2; split-window algorithm; water vapor retrieval; Yazd; SPLIT-WINDOW ALGORITHM; AVHRR DATA; RETRIEVAL; VALIDATION; IMPROVEMENTS; VARIABILITY; PRODUCT; COVER;
D O I
10.3390/atmos14101589
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land surface temperature (LST) is a significant environmental factor in many studies. LST estimation methods require various parameters, such as emissivity, temperature, atmospheric transmittance and water vapor. Uncertainty in these parameters can cause error in LST estimation. The present study shows how the moderate resolution imaging spectroradiometer (MODIS) water vapor imagery can improve the accuracy of Landsat 8 LST in different land covers of arid regions of Yazd province in Iran. For this purpose, water vapor variation is analyzed for different land covers within different seasons. Validation is performed using T-based and cross-validation methods. The image of atmospheric water vapor is estimated using the MODIS sensor, and its changes are investigated in different land covers. The bare lands and sparse vegetation show the highest and lowest accuracy levels for T-based validation, respectively. The root mean square error (RMSE) is also calculated as 0.57 degrees C and 1.41 degrees C for the improved and general split-window (SW) algorithms, respectively. The cross-validation results show that the use of the MODIS water vapor imagery in the SW algorithm leads to a reduction of about 2.2% in the area where the RMSE group is above 5 degrees C.
引用
收藏
页数:19
相关论文
共 84 条
[1]   Opportunities and Challenges of Spaceborne Sensors in Delineating Land Surface Temperature Trends: A Review [J].
Ahmed, M. Razu ;
Ghaderpour, Ebrahim ;
Gupta, Anil ;
Dewan, Ashraf ;
Hassan, Quazi K. .
IEEE SENSORS JOURNAL, 2023, 23 (07) :6460-6472
[2]   Crop Mapping Using Random Forest and Particle Swarm Optimization based on Multi-Temporal Sentinel-2 [J].
Akbari, Elahe ;
Boloorani, Ali Darvishi ;
Samany, Najmeh Neysani ;
Hamzeh, Saeid ;
Soufizadeh, Saeid ;
Pignatti, Stefano .
REMOTE SENSING, 2020, 12 (09)
[3]   Remote sensing of atmospheric water vapor using the Moderate Resolution Imaging Spectroradiometer [J].
Albert, P ;
Bennartz, R ;
Preusker, R ;
Leinweber, R ;
Fischer, J .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2005, 22 (03) :309-314
[4]   Identifying and Monitoring Gardens in Urban Areas Using Aerial and Satellite Imagery [J].
Arabi Aliabad, Fahime ;
Ghafarian Malmiri, Hamidreza ;
Sarsangi, Alireza ;
Sekertekin, Aliihsan ;
Ghaderpour, Ebrahim .
REMOTE SENSING, 2023, 15 (16)
[5]   Spatio-temporal patterns in green infrastructure as driver of land surface temperature variability: The case of Sydney [J].
Bartesaghi-Koc, Carlos ;
Osmond, Paul ;
Peters, Alan .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 83
[6]   Estimating high resolution evapotranspiration from disaggregated thermal images [J].
Bisquert, M. ;
Sanchez, J. M. ;
Lopez-Urrea, R. ;
Caselles, V. .
REMOTE SENSING OF ENVIRONMENT, 2016, 187 :423-433
[7]  
Chen M., 2010, WSEAS Trans. Inf. Sci. Appl, V6, P477
[8]   Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data [J].
Coll, C ;
Caselles, V ;
Galve, JM ;
Valor, E ;
Niclòs, R ;
Sánchez, JM ;
Rivas, R .
REMOTE SENSING OF ENVIRONMENT, 2005, 97 (03) :288-300
[9]   Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data [J].
Coll, Cesar ;
Caselles, Vicente ;
Valor, Enric ;
Niclos, Raquel .
REMOTE SENSING OF ENVIRONMENT, 2012, 117 :199-210
[10]   An Improved Single-Channel Method to Retrieve Land Surface Temperature from the Landsat-8 Thermal Band [J].
Cristobal, Jordi ;
Jimenez-Munoz, Juan C. ;
Prakash, Anupma ;
Mattar, Cristian ;
Skokovic, Drazen ;
Sobrino, Jose A. .
REMOTE SENSING, 2018, 10 (03)