A Collaborative Control Scheme for Smart Vehicles Based on Multi-Agent Deep Reinforcement Learning

被引:1
|
作者
Shi, Liyan [1 ]
Chen, Hairui [2 ]
机构
[1] Open Univ Henan, Sch Informat Engn & Artificial Intelligence, Zhengzhou 450046, Peoples R China
[2] Zhongyuan Univ Technol, Zhongyuan Petersburg Aviat Coll, Zhengzhou 450007, Peoples R China
关键词
Reinforcement learning; Control systems; Adaptation models; Roads; Optimization; Vehicle dynamics; Heuristic algorithms; Intelligent transportation systems; Collaborative control; smart vehicles; deep reinforcement learning; intelligent transportation systems; EDGE; SECURITY; INTERNET;
D O I
10.1109/ACCESS.2023.3312021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of artificial intelligence and autonomous driving technology, the vehicle-road cooperative control system combined with artificial intelligence technology can provide more effective and adaptive traffic control solutions for intelligent transportation systems. Existing research works are confronted with two kinds of challenges. For one thing, traditional recurrent neural networks-based methods cannot model the long-time dependent information in traffic flow sequences. For another, the large sample correlation makes it difficult to optimize the trained strategies. In this paper, we propose a Multi-agent Deep Reinforcement Learning (MADRL)-based intelligent vehicle cooperative control method to deal remedy current gaps. To this end, a closed-loop control system of self-driving vehicles and signal controllers is used as the research object to achieve dynamic scheduling of traffic flow by MADRL. After designing relevant experimental validation, the feasibility of the method is verified in terms of both scheme comparison and operational effect analysis, which is a good aid to traffic signal timing. The simulation results show that the proposal can be well utilized to realize collaborative control of smart vehicles, and there is some performance improvement compared with several typical methods.
引用
收藏
页码:96221 / 96234
页数:14
相关论文
共 50 条
  • [41] Multi-agent behavioral control system using deep reinforcement learning
    Ngoc Duy Nguyen
    Thanh Nguyen
    Nahavandi, Saeid
    NEUROCOMPUTING, 2019, 359 : 58 - 68
  • [42] Application of Traffic Light Control in Oversaturated Urban Network Using Multi-Agent Deep Reinforcement Learning
    Ei Mon, Ei
    Ochiai, Hideya
    Aswakul, Chaodit
    IEEE ACCESS, 2024, 12 : 82384 - 82395
  • [43] Dynamic power allocation in IIoT based on multi-agent deep reinforcement learning
    Li, Fenglei
    Liu, Zhixin
    Zhang, Xinzhe
    Yang, Yi
    NEUROCOMPUTING, 2022, 505 : 10 - 18
  • [44] Load Frequency Control: A Deep Multi-Agent Reinforcement Learning Approach
    Rozada, Sergio
    Apostolopoulou, Dimitra
    Alonso, Eduardo
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [45] Cooperative Multi-Agent Deep Reinforcement Learning with Counterfactual Reward
    Shao, Kun
    Zhu, Yuanheng
    Tang, Zhentao
    Zhao, Dongbin
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [46] Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms
    Ibrahim, Abdikarim Mohamed
    Yau, Kok-Lim Alvin
    Chong, Yung-Wey
    Wu, Celimuge
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [47] Multi-Agent Deep Reinforcement Learning Based Scheduling Approach for Mobile Charging in Internet of Electric Vehicles
    Liu, Linfeng
    Huang, Zhuo
    Xu, Jia
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 10130 - 10145
  • [48] A Multi-agent Deep Reinforcement Learning-Based Collaborative Willingness Network for Automobile Maintenance Service
    Hao, Shengang
    Zheng, Jun
    Yang, Jie
    Ni, Ziwei
    Zhang, Quanxin
    Zhang, Li
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY WORKSHOPS, ACNS 2022, 2022, 13285 : 84 - 103
  • [49] PowerNet: Multi-Agent Deep Reinforcement Learning for Scalable Powergrid Control
    Chen, Dong
    Chen, Kaian
    Li, Zhaojian
    Chu, Tianshu
    Yao, Rui
    Qiu, Feng
    Lin, Kaixiang
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (02) : 1007 - 1017
  • [50] Negotiation agent based on Deep reinforcement learning for multi-agent cooperative distributed predictive control.
    Aponte-Rengifo, O.
    Francisco, M.
    Vega, P.
    IFAC PAPERSONLINE, 2023, 56 (02): : 1496 - 1501