A Collaborative Control Scheme for Smart Vehicles Based on Multi-Agent Deep Reinforcement Learning

被引:1
|
作者
Shi, Liyan [1 ]
Chen, Hairui [2 ]
机构
[1] Open Univ Henan, Sch Informat Engn & Artificial Intelligence, Zhengzhou 450046, Peoples R China
[2] Zhongyuan Univ Technol, Zhongyuan Petersburg Aviat Coll, Zhengzhou 450007, Peoples R China
关键词
Reinforcement learning; Control systems; Adaptation models; Roads; Optimization; Vehicle dynamics; Heuristic algorithms; Intelligent transportation systems; Collaborative control; smart vehicles; deep reinforcement learning; intelligent transportation systems; EDGE; SECURITY; INTERNET;
D O I
10.1109/ACCESS.2023.3312021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of artificial intelligence and autonomous driving technology, the vehicle-road cooperative control system combined with artificial intelligence technology can provide more effective and adaptive traffic control solutions for intelligent transportation systems. Existing research works are confronted with two kinds of challenges. For one thing, traditional recurrent neural networks-based methods cannot model the long-time dependent information in traffic flow sequences. For another, the large sample correlation makes it difficult to optimize the trained strategies. In this paper, we propose a Multi-agent Deep Reinforcement Learning (MADRL)-based intelligent vehicle cooperative control method to deal remedy current gaps. To this end, a closed-loop control system of self-driving vehicles and signal controllers is used as the research object to achieve dynamic scheduling of traffic flow by MADRL. After designing relevant experimental validation, the feasibility of the method is verified in terms of both scheme comparison and operational effect analysis, which is a good aid to traffic signal timing. The simulation results show that the proposal can be well utilized to realize collaborative control of smart vehicles, and there is some performance improvement compared with several typical methods.
引用
收藏
页码:96221 / 96234
页数:14
相关论文
共 50 条
  • [21] DeepAir: A Multi-Agent Deep Reinforcement Learning-Based Scheme for an Unknown User Location Problem
    Yamansavascilar, Baris
    Ozgovde, Atay
    Ersoy, Cem
    IEEE ACCESS, 2024, 12 : 192195 - 192208
  • [22] Multi-Agent Deep Reinforcement Learning-Based Multi-Objective Cooperative Control Strategy for Hybrid Electric Vehicles
    Gan, Jiongpeng
    Li, Shen
    Lin, Xianke
    Tang, Xiaolin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (08) : 11123 - 11135
  • [23] End-to-end Deep Reinforcement Learning for Multi-agent Collaborative Exploration
    Chen, Zichen
    Subagdja, Budhitama
    Tan, Ah-Hwee
    2019 IEEE INTERNATIONAL CONFERENCE ON AGENTS (ICA), 2019, : 99 - 102
  • [24] Multi-Agent Reinforcement Learning for Smart Community Energy Management
    Wilk, Patrick
    Wang, Ning
    Li, Jie
    ENERGIES, 2024, 17 (20)
  • [25] Multi-Agent Deep Reinforcement Learning for Voltage Control With Coordinated Active and Reactive Power Optimization
    Hu, Daner
    Ye, Zhenhui
    Gao, Yuanqi
    Ye, Zuzhao
    Peng, Yonggang
    Yu, Nanpeng
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (06) : 4873 - 4886
  • [26] Distributed Deep Multi-Agent Reinforcement Learning for Cooperative Edge Caching in Internet-of-Vehicles
    Zhou, Huan
    Jiang, Kai
    He, Shibo
    Min, Geyong
    Wu, Jie
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9595 - 9609
  • [27] A review of the applications of multi-agent reinforcement learning in smart factories
    Bahrpeyma, Fouad
    Reichelt, Dirk
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [28] Multi-agent deep reinforcement learning for collaborative task offloading in mobile edge computing networks
    Chen, Minxuan
    Guo, Aihuang
    Song, Chunlin
    DIGITAL SIGNAL PROCESSING, 2023, 140
  • [29] Sustainable Smart Cities through Multi-Agent Reinforcement Learning-Based Cooperative Autonomous Vehicles
    Louati, Ali
    Louati, Hassen
    Kariri, Elham
    Neifar, Wafa
    Hassan, Mohamed K.
    Khairi, Mutaz H. H.
    Farahat, Mohammed A.
    El-Hoseny, Heba M.
    SUSTAINABILITY, 2024, 16 (05)
  • [30] Dynamic Arterial Coordinated Control Based on Multi-agent Reinforcement Learning
    Fang, Liangliang
    Zhang, Weibin
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2716 - 2721