Stability approach to torsion pairs on abelian categories

被引:0
|
作者
Chen, Mingfa [1 ]
Lin, Yanan [1 ]
Ruan, Shiquan [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Stability data; Torsion pair; Weighted projective line; Elliptic curve; Tube category; HALL ALGEBRAS;
D O I
10.1016/j.jalgebra.2023.08.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce a local-refinement procedure to investigate stability data on an abelian category, and provide a sufficient and necessary condition for a stability data to be finest. We classify all the finest stability data for the categories of coherent sheaves over certain weighted projective curves, including the classical projective line, smooth elliptic curves and certain weighted projective lines. As applications, we obtain a classification of torsion pairs for these categories via stability data approach. As a by-product, a new proof for the classification of torsion pairs in any tube category is also provided.
引用
收藏
页码:560 / 602
页数:43
相关论文
共 35 条
  • [21] EXCEPTIONAL PAIRS IN HEREDITARY CATEGORIES
    Lenzing, Helmut
    Meltzer, Hagen
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (08) : 2547 - 2556
  • [22] TORSION PAIRS IN SILTING THEORY
    Huegel, Lidia Angeleri
    Marks, Frederik
    Vitoria, Jorge
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 291 (02) : 257 - 278
  • [23] Torsion pairs and cosilting in type A
    Baur, Karin
    Laking, Rosanna
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (10)
  • [24] Wide coreflective subcategories and torsion pairs
    Hugel, Lidia Angeleri
    Sentieri, Francesco
    JOURNAL OF ALGEBRA, 2025, 664 : 164 - 205
  • [25] Equivalence of Hearts of Twin Cotorsion Pairs on Triangulated Categories
    Nakaoka, Hiroyuki
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (10) : 4302 - 4326
  • [26] Torsion points on some abelian surfaces of CM-type
    Nakamura, Tetsuo
    JOURNAL OF NUMBER THEORY, 2010, 130 (04) : 1061 - 1067
  • [27] Torsion pairs in a triangulated category generated by a spherical object
    Simoes, Raquel Coelho
    Pauksztello, David
    JOURNAL OF ALGEBRA, 2016, 448 : 1 - 47
  • [28] The Torsion Subgroup of a Family of Elliptic Curves Over the Maximal Abelian Extension of ℚ
    Jerome Tomagan Dimabayao
    Czechoslovak Mathematical Journal, 2020, 70 : 979 - 995
  • [29] Torsion pairs and related modules over trivial ring extensions
    Mao, Lixin
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (05): : 1291 - 1304
  • [30] Torsion Pairs and t-Structures in Db(coh(X))
    Alvares, Edson Ribeiro
    Silva, D. D.
    ALGEBRAS AND REPRESENTATION THEORY, 2025,