Combined transcriptomic and metabolomic analyses reveal the mechanism of debagged 'Fuji' apple sunburn

被引:4
|
作者
Feng, Yifeng [1 ,2 ]
Liu, Li [1 ]
Yu, Jing [1 ]
Chen, Rongxin [1 ]
Hu, Can [3 ]
Wang, Hui [1 ]
Li, Dongmei [1 ]
Wang, Zidun [1 ]
Zhao, Zhengyang [1 ]
机构
[1] Northwest A&F Univ, Coll Hort, Yangling 712100, Shaanxi, Peoples R China
[2] Tarim Univ, Coll Hort & Forestry, Alaer 843300, Xinjiang, Peoples R China
[3] Tarim Univ, Coll Mech Electrificat Engn, Alaer 843300, Xinjiang, Peoples R China
关键词
Apple skin; Sunburn; Transcriptomic and metabolomic; MYBR9; TF; HIGH LIGHT; ANTIOXIDANT ENZYMES; PHENOLIC-COMPOUNDS; OXIDATIVE STRESS; SALICYLIC-ACID; SALT STRESS; FRUIT; TOMATO; EXPRESSION; TOLERANCE;
D O I
10.1016/j.lwt.2023.114680
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Bagging of apples can improve the quality and commercial value of fruit. However, the sudden exposure of bagged fruit to high temperature and high light can lead to sunburn of the fruit surface. The molecular mechanism underlying the process of apple skin sunburn is poorly characterized. Here, we analyzed transcriptomic and metabolomic data from debagged apples subjected to high temperature and high light stress. Specifically, we studied the differential gene expression and metabolite accumulation in normal apple skin (NM), photooxidized apple skin (PS), and skin with browned (SB). High light and heat stress led to enrichment of differentially expressed genes (DEGs) related to the flavonoid biosynthesis pathway, and screening revealed 32 transcription factors (TFs) and 11 structural genes as targets. Furthermore, we found that MYB family TFs were significantly correlated with most structural genes in the flavonoid metabolism pathway, particularly the MdMYBR9 TF. We injected the MdMYBR9 TF into apple skin, and we found that the apple skin with overexpression of MdMYBR9 TF exhibited less severe sunburn, the apple with silenced MdMYBR9 TF exhibited severe sunburn. These findings provide a theoretical basis for further understanding the transcriptional regulation mechanism related to apple skin sunburn.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Transcriptomic and metabolomic analyses reveal the mechanism of color difference between two kinds of Cistanche deserticola before and after drying
    Zhu, Tiantian
    Zhang, Jing
    Liu, Tianle
    Zhang, Shuai
    Yang, Baimei
    Xu, Li
    Zhao, Lei
    Li, Mengfei
    Jin, Ling
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [42] Combined metabolomic and transcriptomic analysis to reveal the response of rice to Mn toxicity stress
    Li, Feng
    Yao, Yushuang
    Ma, Jiapeng
    Wu, Zhengwei
    Zheng, Dianfeng
    Xue, Yingbin
    Liu, Ying
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2025, 289
  • [43] Transcriptomic and Metabolomic Analyses Providing Insights into the Coloring Mechanism of Docynia delavayi
    Wang, Yuchang
    Song, Yuyang
    Wang, Dawei
    FOODS, 2022, 11 (18)
  • [44] Transcriptomic and metabolomic analyses reveal the flavor of bitterness in the tip shoots of Bambusa oldhamii Munro
    Jiao, Yulian
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [45] Integrated transcriptomic and metabolomic analyses reveal regulation of terpene biosynthesis in the stems of Sindora glabra
    Yu, Niu
    Chen, Zhaoli
    Yang, Jinchang
    Li, Rongsheng
    Zou, Wentao
    TREE PHYSIOLOGY, 2021, 41 (06) : 1087 - 1102
  • [46] Integrative metabolomic and transcriptomic analyses reveal the mechanisms of Tibetan hulless barley grain coloration
    Xu, Congping
    Abbas, Hafiz Muhammad Khalid
    Zhan, Chuansong
    Huang, Yuxiao
    Huang, Sishu
    Yang, Haizhen
    Wang, Yulin
    Yuan, Hongjun
    Luo, Jie
    Zeng, Xingquan
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [47] Transcriptomic and Metabolomic Analyses Reveal That Fullerol Improves Drought Tolerance in Brassica napus L
    Xiong, Jun-Lan
    Ma, Ni
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (23)
  • [48] Metabolomic and Transcriptomic Analyses Reveal that Blue Light Promotes Chlorogenic Acid Synthesis in Strawberry
    Chen, Xiaodong
    Cai, Weijian
    Xia, Jin
    Yu, Hongmei
    Wang, Qinglian
    Pang, Fuhua
    Zhao, Mizhen
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (44) : 12485 - 12492
  • [49] Transcriptomic and metabolomic analyses reveal that lemon extract prolongs Drosophila lifespan by affecting metabolism
    Wang, Siqi
    Xiao, Feng
    Yuan, Ya
    Li, Jiamei
    Liang, Xiaoxia
    Fan, Xiaolan
    Zhang, Mingwang
    Yan, Taiming
    Yang, Mingyao
    He, Zhi
    Yang, Deying
    GENOMICS, 2024, 116 (01)
  • [50] Transcriptomic and metabolomic analyses reveal the flavor of bitterness in the tip shoots of Bambusa oldhamii Munro
    Yulian Jiao
    Scientific Reports, 13