Combined transcriptomic and metabolomic analyses reveal the mechanism of debagged 'Fuji' apple sunburn

被引:4
|
作者
Feng, Yifeng [1 ,2 ]
Liu, Li [1 ]
Yu, Jing [1 ]
Chen, Rongxin [1 ]
Hu, Can [3 ]
Wang, Hui [1 ]
Li, Dongmei [1 ]
Wang, Zidun [1 ]
Zhao, Zhengyang [1 ]
机构
[1] Northwest A&F Univ, Coll Hort, Yangling 712100, Shaanxi, Peoples R China
[2] Tarim Univ, Coll Hort & Forestry, Alaer 843300, Xinjiang, Peoples R China
[3] Tarim Univ, Coll Mech Electrificat Engn, Alaer 843300, Xinjiang, Peoples R China
关键词
Apple skin; Sunburn; Transcriptomic and metabolomic; MYBR9; TF; HIGH LIGHT; ANTIOXIDANT ENZYMES; PHENOLIC-COMPOUNDS; OXIDATIVE STRESS; SALICYLIC-ACID; SALT STRESS; FRUIT; TOMATO; EXPRESSION; TOLERANCE;
D O I
10.1016/j.lwt.2023.114680
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Bagging of apples can improve the quality and commercial value of fruit. However, the sudden exposure of bagged fruit to high temperature and high light can lead to sunburn of the fruit surface. The molecular mechanism underlying the process of apple skin sunburn is poorly characterized. Here, we analyzed transcriptomic and metabolomic data from debagged apples subjected to high temperature and high light stress. Specifically, we studied the differential gene expression and metabolite accumulation in normal apple skin (NM), photooxidized apple skin (PS), and skin with browned (SB). High light and heat stress led to enrichment of differentially expressed genes (DEGs) related to the flavonoid biosynthesis pathway, and screening revealed 32 transcription factors (TFs) and 11 structural genes as targets. Furthermore, we found that MYB family TFs were significantly correlated with most structural genes in the flavonoid metabolism pathway, particularly the MdMYBR9 TF. We injected the MdMYBR9 TF into apple skin, and we found that the apple skin with overexpression of MdMYBR9 TF exhibited less severe sunburn, the apple with silenced MdMYBR9 TF exhibited severe sunburn. These findings provide a theoretical basis for further understanding the transcriptional regulation mechanism related to apple skin sunburn.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Transcriptomic and Metabolomic Analyses Reveal the Key Genes Related to Shade Tolerance in Soybean
    Jiang, Aohua
    Liu, Jiaqi
    Gao, Weiran
    Ma, Ronghan
    Zhang, Jijun
    Zhang, Xiaochun
    Du, Chengzhang
    Yi, Zelin
    Fang, Xiaomei
    Zhang, Jian
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (18)
  • [32] Integrative transcriptomic and metabolomic analyses reveal the phenylpropanoid and flavonoid biosynthesis of Prunus mume
    Wu, Rui
    Qian, Chengcheng
    Yang, Yatian
    Liu, Yi
    Xu, Liang
    Zhang, Wei
    Ou, Jinmei
    JOURNAL OF PLANT RESEARCH, 2024, 137 (01) : 95 - 109
  • [33] Transcriptomic and metabolomic analyses reveal phenolic metabolism regulated by melatonin in pear peel
    Yan, Shuai
    Zhao, Liangliang
    Zhao, Deying
    Xu, Gongxun
    Wang, Yufei
    Zhou, Zhiqin
    Cheng, Cungang
    CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE, 2025, 12 (01)
  • [34] Integrated transcriptomic and metabolomic analyses reveal heterosis for meat quality of Neijiang pigs
    Dan, Haifeng
    Liu, Chengming
    Zhang, Huiling
    Gan, Mailin
    Wang, Yan
    Chen, Lei
    Zhao, Ye
    Liu, Bin
    Zhu, Kangping
    Niu, Lili
    Zhu, Li
    Shen, Linyuan
    FRONTIERS IN VETERINARY SCIENCE, 2024, 11
  • [35] Integrative transcriptomic and metabolomic analyses reveal the phenylpropanoid and flavonoid biosynthesis of Prunus mume
    Rui Wu
    Chengcheng Qian
    Yatian Yang
    Yi Liu
    Liang Xu
    Wei Zhang
    Jinmei Ou
    Journal of Plant Research, 2024, 137 : 95 - 109
  • [36] Transcriptomic and Metabolomic Analyses Reveal Molecular Regulatory Networks for Pigmentation Deposition in Sheep
    Zhang, Mancheng
    Xu, Xiaoli
    Chen, Yuan
    Wei, Chengqi
    Zhan, Siyuan
    Cao, Jiaxue
    Guo, Jiazhong
    Dai, Dinghui
    Wang, Linjie
    Zhong, Tao
    Zhang, Hongping
    Li, Li
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (15)
  • [37] Combined Transcriptomic and Metabolomic Analyses Reveal the Mechanisms by Which the Interaction Between Sulfur and Nitrogen Affects Garlic Yield and Quality
    Ren, Licai
    Pan, Xudong
    Deng, Yang
    Ge, Zhengkang
    Li, Shiyuan
    Su, Dong
    Zhao, Guoqian
    Tang, Hui
    Wang, Xiangfei
    HORTICULTURAE, 2024, 10 (11)
  • [38] Integrated Transcriptomic and Metabolomic Analyses Reveal Low-Temperature Tolerance Mechanism in Giant Freshwater Prawn Macrobrachium rosenbergii
    Tu, Haihui
    Peng, Xin
    Yao, Xinyi
    Tang, Qiongying
    Xia, Zhenglong
    Li, Jingfen
    Yang, Guoliang
    Yi, Shaokui
    ANIMALS, 2023, 13 (10):
  • [39] Transcriptomic and metabolomic analyses reveal defense mechanism in 'Beta' grapevine root border cells under ?-hydroxybenzoic acid stress
    Zhang, Liheng
    Liu, Qianwen
    Li, Kun
    Guo, Xiuwu
    Guo, Yinshan
    Liu, Zhendong
    Lin, Hong
    An, Dong
    Yang, Fengying
    SCIENTIA HORTICULTURAE, 2022, 302
  • [40] Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of apple dwarfing rootstock root morphogenesis under nitrogen and/or phosphorus deficient conditions
    Xie, Bin
    Chen, Yanhui
    Zhang, Yanzhen
    An, Xiuhong
    Li, Xin
    Yang, An
    Kang, Guodong
    Zhou, Jiangtao
    Cheng, Cungang
    FRONTIERS IN PLANT SCIENCE, 2023, 14