Combined transcriptomic and metabolomic analyses reveal the mechanism of debagged 'Fuji' apple sunburn

被引:5
|
作者
Feng, Yifeng [1 ,2 ]
Liu, Li [1 ]
Yu, Jing [1 ]
Chen, Rongxin [1 ]
Hu, Can [3 ]
Wang, Hui [1 ]
Li, Dongmei [1 ]
Wang, Zidun [1 ]
Zhao, Zhengyang [1 ]
机构
[1] Northwest A&F Univ, Coll Hort, Yangling 712100, Shaanxi, Peoples R China
[2] Tarim Univ, Coll Hort & Forestry, Alaer 843300, Xinjiang, Peoples R China
[3] Tarim Univ, Coll Mech Electrificat Engn, Alaer 843300, Xinjiang, Peoples R China
关键词
Apple skin; Sunburn; Transcriptomic and metabolomic; MYBR9; TF; HIGH LIGHT; ANTIOXIDANT ENZYMES; PHENOLIC-COMPOUNDS; OXIDATIVE STRESS; SALICYLIC-ACID; SALT STRESS; FRUIT; TOMATO; EXPRESSION; TOLERANCE;
D O I
10.1016/j.lwt.2023.114680
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Bagging of apples can improve the quality and commercial value of fruit. However, the sudden exposure of bagged fruit to high temperature and high light can lead to sunburn of the fruit surface. The molecular mechanism underlying the process of apple skin sunburn is poorly characterized. Here, we analyzed transcriptomic and metabolomic data from debagged apples subjected to high temperature and high light stress. Specifically, we studied the differential gene expression and metabolite accumulation in normal apple skin (NM), photooxidized apple skin (PS), and skin with browned (SB). High light and heat stress led to enrichment of differentially expressed genes (DEGs) related to the flavonoid biosynthesis pathway, and screening revealed 32 transcription factors (TFs) and 11 structural genes as targets. Furthermore, we found that MYB family TFs were significantly correlated with most structural genes in the flavonoid metabolism pathway, particularly the MdMYBR9 TF. We injected the MdMYBR9 TF into apple skin, and we found that the apple skin with overexpression of MdMYBR9 TF exhibited less severe sunburn, the apple with silenced MdMYBR9 TF exhibited severe sunburn. These findings provide a theoretical basis for further understanding the transcriptional regulation mechanism related to apple skin sunburn.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Photoprotection mechanism in the 'Fuji' apple peel at different levels of photooxidative sunburn
    Zhang, Jiangli
    Niu, Junping
    Duan, Ying
    Zhang, Mengxia
    Liu, Jingying
    Li, Pengmin
    Ma, Fengwang
    PHYSIOLOGIA PLANTARUM, 2015, 154 (01) : 54 - 65
  • [2] Ionomic Combined with Transcriptomic and Metabolomic Analyses to Explore the Mechanism Underlying the Effect of Melatonin in Relieving Nutrient Stress in Apple
    Cao, Yang
    Du, Peihua
    Ji, Jiahao
    He, Xiaolong
    Zhang, Jiran
    Shang, Yuwei
    Liu, Huaite
    Xu, Jizhong
    Liang, Bowen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [3] Integrative Metabolomic and Transcriptomic Analyses Reveal the Mechanism of Petal Blotch Formation in Rosa persica
    Wang, Huan
    Kong, Ying
    Dou, Xiaoying
    Yang, Yi
    Chi, Xiufeng
    Lang, Lixin
    Zhang, Qixiang
    Pan, Huitang
    Bai, Jinrong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (07)
  • [4] Transcriptomic and metabolomic analyses reveal molecular and metabolic regulation of anthocyanin biosynthesis in three varieties of currant
    Wang, Haoyu
    Gang, Huixin
    Chen, Jing
    Liu, Jiale
    Zhang, Xuelin
    Fu, Chunlin
    Shao, Kailin
    Wang, Xueting
    Qin, Dong
    Huo, Junwei
    FOOD RESEARCH INTERNATIONAL, 2024, 196
  • [5] Integrated transcriptomic and metabolomic analyses reveal the molecular mechanism of flower color differentiation in Orychophragmus violaceus
    Shi, Yubin
    Wang, Zixuan
    Yan, Zhuangzhuang
    Liu, Jianfeng
    Zhang, Jun
    Liu, Guixia
    FRONTIERS IN PLANT SCIENCE, 2025, 16
  • [6] Transcriptomic and metabolomic analyses reveal the mechanism of color difference between two kinds of Cistanche deserticola before and after drying
    Zhu, Tiantian
    Zhang, Jing
    Liu, Tianle
    Zhang, Shuai
    Yang, Baimei
    Xu, Li
    Zhao, Lei
    Li, Mengfei
    Jin, Ling
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [7] Combined transcriptomic and physiological metabolomic analyses elucidate key biological pathways in the response of two sorghum genotypes to salinity stress
    Zhang, Fei
    Lu, Feng
    Wang, Yanqiu
    Zhang, Zhipeng
    Wang, Jiaxu
    Zhang, Kuangye
    Wu, Han
    Zou, Jianqiu
    Duan, Youhou
    Ke, Fulai
    Zhu, Kai
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [8] Transcriptomic and Metabolomic Analyses Providing Insights into the Coloring Mechanism of Docynia delavayi
    Wang, Yuchang
    Song, Yuyang
    Wang, Dawei
    FOODS, 2022, 11 (18)
  • [9] Physiological, transcriptomic, and metabolomic analyses reveal the adaptation mechanism of Betaphycus gelatinus under different salinity conditions
    Tian, Hui
    Deng, Yongqiu
    Liao, Kangtai
    Xu, Siqi
    Chen, Jihong
    He, Linwen
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2025, 86
  • [10] Comparative Transcriptomic and Metabolomic Analyses Reveal the Regulatory Effect and Mechanism of Tea Extracts on the Biosynthesis of Monascus Pigments
    Li, Wen-Long
    Hong, Jia-Li
    Lu, Jin-Qiang
    Tong, Shan-Gong
    Ni, Li
    Liu, Bin
    Lv, Xu-Cong
    FOODS, 2022, 11 (20)